Skip to main content
Log in

Quantal analysis of excitatory synaptic action and depression in hippocampal slices

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

QUANTAL analysis can provide a quantitative description of important aspects of chemical synaptic transmission and its modification1–3. The technique has recently been applied to excita-tory synapses within the hippocampus4–10, especially the form of synaptic plasticity known as long-term potentiation11–13. However, these attempts have met with only limited success, in that the individual quantal amplitudes making up the synaptic response generally could not be resolved. Here we have paid attention to the possible instability of the quantal fluctuation pattern over time. We were able to resolve individual quantal component amplitudes for a high proportion of the experiments, and so demonstrate the quantal nature of excitatory transmission in the CA1 region of the hippocampus. Mean quantal amplitudes for individual excita-tory postsynaptic potentials were 84–197 μV, with a mean of 131 ± 29 μV. For periods during which the fluctuation pattern was stable, the variance associated with individual quantal amplitudes was low. We have also used quantal analysis to show that synaptic depression following prolonged stimulation at these synapses is primarily a presynaptic phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. del Castillo, J. & Katz, B. J. Physlol., Lond. 124, 560–573 (1954).

    Article  CAS  Google Scholar 

  2. Martin, A. R. in Handbook of Physiology. (1) The Nervous System (ed. Kandel, E. R.) 329–355 (Am. Physiol. Soc., Bethesda, 1977).

    Google Scholar 

  3. Redman, S. Physiol. Rev. 70, 165–198 (1990).

    Article  CAS  Google Scholar 

  4. Yamamoto, C. Expl Brain Res. 46, 170–176 (1982).

    Article  CAS  Google Scholar 

  5. Hess, G., Kuhnt, U. & Voronin, L. L. Neurosci. Lett. 77, 187–192 (1987).

    Article  CAS  Google Scholar 

  6. Sayer, R. J., Redman, S. J. & Anderson, P. J. Neurosci. 9, 840–850 (1989).

    Article  CAS  Google Scholar 

  7. Sayer, R. J., Friedlander, M. J. & Redman, S. J. J. Neurosci. 10, 826–836 (1990).

    Article  CAS  Google Scholar 

  8. Malinow, R. & Tsien, R. W. Nature 346, 177–180 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Bekkers, J. M. & Stevens, C. F. Nature 341, 230–233 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Bekkers, J. M. & Stevens, C. F. Nature 346, 724–729 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Nicoll, R. A., Kauer, J. A. & Malenka, R. C. Neuron 1, 97–103 (1988).

    Article  CAS  Google Scholar 

  12. Kennedy, M. B. Cell 59, 777–787 (1989).

    Article  CAS  Google Scholar 

  13. Friedlander, M. J., Sayer, R. J. & Redman, S. J. J. Neurosci. 10, 814–825 (1990).

    Article  CAS  Google Scholar 

  14. Kullmann, D. M. J. Neurosci. Meth. 30, 231–245 (1989).

    Article  CAS  Google Scholar 

  15. Schwartzkroin, P. A. & Mueller, A. L. in Cerebral Cortex Vol. 6 (eds Jones, E. G. & Peters, A.) 295–343 (Plenum, New York, 1987).

    Book  Google Scholar 

  16. Riveros, N., Fiedler, J., Lagos, N., Munoz, C. & Orrego, F. Brain Res. 386, 405–408 (1986).

    Article  CAS  Google Scholar 

  17. Villanueva, S., Fiedler, J. & Orrego, F. Neuroscience 37, 23–30 (1990).

    Article  CAS  Google Scholar 

  18. Tang, C.-M., Dichter, D. & Morad, M. Science 243, 1474–1477 (1989).

    Article  ADS  CAS  Google Scholar 

  19. Trussell, L. O. & Fischbach, G. D. Neuron 3, 209–218 (1989).

    Article  CAS  Google Scholar 

  20. Bekkers, J. M., Richerson, G. B. & Stevens, C. F. Proc. natn. Acad. Sci. U.S.A. 87, 5359–5362 (1990).

    Article  ADS  CAS  Google Scholar 

  21. Edwards, F. A., Konnerth, A. & Sakmann, B. J. Physiol., Lond. 430, 213–249 (1990).

    Article  CAS  Google Scholar 

  22. Bennett, M. R. & Lavidis, N. A. J. Physiol., Lond. 418, 219–233 (1989).

    Article  CAS  Google Scholar 

  23. Jack, J. J. B., Redman, S. J. & Wong, K. J. Physiol., Lond. 321, 65–96 (1981).

    Article  CAS  Google Scholar 

  24. Walmsley, B., Edwards, F. R. & Tracey, D. J. J. Neurosci. 7, 1037–1046 (1987).

    Article  CAS  Google Scholar 

  25. Walmsley, B., Edwards, F. R. & Tracey, D. J. J. Neurophysiol. 60, 889–908 (1988).

    Article  CAS  Google Scholar 

  26. del Castillo, J. & Katz, B. J. Physiol. 124, 574–585 (1954).

    Article  CAS  Google Scholar 

  27. Magleby, K. L. in Synaptic Function (eds Edelman, G. M., Gall, W. E. & Cowan, W. M.) 21–56 (Wiley, New York, 1987).

    Google Scholar 

  28. Thies, R. E. J. Neurophysiol. 28, 427–442 (1965).

    Article  CAS  Google Scholar 

  29. Korn, H., Faber, D. S., Burnod, Y. & Triller, A. J. Neurosci. 4, 125–130 (1984).

    Article  CAS  Google Scholar 

  30. Sarantis, M. & Attwell, D. Brain Res. 516, 322–325 (1990).

    Article  CAS  Google Scholar 

  31. Jack, J. J. B., Kullmann, D. M., Larkman, A. U., Major, G. & Stratford, K. J. Cold Spring Harb. Symp. quant. Biol. (in the press).

  32. Rahamimoff, R. & Yaari, Y. J. Physiol., Lond. 228, 241–257 (1973).

    Article  CAS  Google Scholar 

  33. Malenka, R. C., Kauer, J. A., Zucker, R. S. & Nicoll, R. A. Science 242, 81–84 (1988).

    Article  ADS  CAS  Google Scholar 

  34. Titterington, D. M., Smith, A. F. M. & Makov, U. E. in Statistical Analysis of Finite Mixture Distributions, 52–147 (Wiley, Chichester, 1985).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larkman, A., Stratford, K. & Jack, J. Quantal analysis of excitatory synaptic action and depression in hippocampal slices. Nature 350, 344–347 (1991). https://doi.org/10.1038/350344a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/350344a0

  • Springer Nature Limited

This article is cited by

Navigation