Skip to main content
Log in

Faceted crystal growth in two dimensions

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

CRYSTAL growth has attracted interest for centuries1. Three-dimensional crystals are usually faceted, but equilibrium thermodynamics prohibits faceting in two dimensions2: the one-dimensional perimeter of a two-dimensional crystal cannot exhibit long-range order at any non-zero temperature3. This need not, however, prevent facets from being stable dynamically during the growth process. Computer simulations have indeed produced nearly faceted two-dimensional crystals4,5. Here we describe the results of experiments on monolayers of a surfactant, sodium dodecyl sulphate (SDS), at the surface of an aqueous solution. Surface-tension measurements and fluorescence microscopy6–8 reveal a solid–liquid transition in the surface monolayer at fixed SDS bulk concentration, as the temperature is decreased. At low SDS con-centration, faceted monolayer crystals appear, although increasing the concentration induces a change to smoother growth morpho-logies. The faceted crystals become unstable as growth proceeds, the corners emitting filaments of various shapes. Some of these growth processes seem not to have three-dimensional analogues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kepler, J. De Nive Sexangula (G. Tampach, Frankfurt on Main, 1611).

    Google Scholar 

  2. Gallavotti, G. Commun. Math. Phys. 27, 103–136 (1972).

    Article  ADS  Google Scholar 

  3. Landau, L. & Lifshitz, E. in Statistical Physics (MIR, Moscow).

  4. Savit, R. & Ziff, R. Phys. Rev. Lett. 55, 2515–2518 (1985).

    Article  ADS  CAS  Google Scholar 

  5. Meakin, P. Phys. Rev. A 38, 418–426 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Peters, R. & Beck, K. Proc. natn. Acad. Sci. U.S.A. 80, 7183–7187 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Lösche, M., Sackmann, E. & Möhwald, H. Ber. Bunsenges. Phys. Chem. 87, 848–852 (1983).

    Article  Google Scholar 

  8. Weis, R. M. & McConnell, H. M. Nature 310, 47–49 (1984).

    Article  ADS  CAS  Google Scholar 

  9. Fontell, K. Mol. Cryst. Liq. Cryst. 63, 59–82 (1981).

    Article  CAS  Google Scholar 

  10. Kekicheff, P. J. Colloid Interface Sci. 131, 133–152 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Hayashi, S. & Ikeda, S. J. phys. Chem. 84, 744–751 (1980).

    Article  CAS  Google Scholar 

  12. Preston, W. C. J. phys. Chem. 52, 84–97 (1948).

    Article  CAS  Google Scholar 

  13. Hato, M. & Shinoda, K. J. phys. Chem. 77, 378–381 (1973).

    Article  CAS  Google Scholar 

  14. Adamson, A. W. Physical Chemistry of Surfaces (Wiley-Interscience, New York, 1982).

    Google Scholar 

  15. Berge, B., Simon, A. J. & Libchaber, A. Phys. Rev. A 41, 6893–6900 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Mullins, W. W. & Sekerka, R. F. J. appl. Phys. 35, 444–451 (1964).

    Article  ADS  Google Scholar 

  17. Ben-Jacob, E. & Garik, P. Nature 343, 523–530 (1990).

    Article  ADS  Google Scholar 

  18. Langer, J. S. Rev. mod. Phys. 52, 1–28 (1980).

    Article  ADS  CAS  Google Scholar 

  19. Gorodetski, A. F. & Saratovkin, D. D. Growth of Crystals (Consultants Bureau, Inc., New York, 1958).

    Google Scholar 

  20. Miller, A., Knoll, W. & Möhwald, H. Phys. Rev. Lett. 56, 2633–2636 (1986).

    Article  ADS  CAS  Google Scholar 

  21. Heckl, W. M. & Möhwald, H. Ber. Bunsenges. Phys. Chem. 90, 1159–1163 (1986).

    Article  CAS  Google Scholar 

  22. Bercegol, H., Gallet, F., Langevin, D. & Meunier, J. J. Physique 50, 2277–2289 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berge, B., Faucheux, L., Schwab, K. et al. Faceted crystal growth in two dimensions. Nature 350, 322–324 (1991). https://doi.org/10.1038/350322a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/350322a0

  • Springer Nature Limited

This article is cited by

Navigation