Skip to main content

Advertisement

Log in

Mechanical control of cyclic AMP signalling and gene transcription through integrins

  • Brief Communication
  • Published:

From Nature Cell Biology

View current issue Submit your manuscript

Abstract

This study was carried out to discriminate between two alternative hypotheses as to how cells sense mechanical forces and transduce them into changes in gene transcription. Do cells sense mechanical signals through generalized membrane distortion1,2 or through specific transmembrane receptors, such as integrins3? Here we show that mechanical stresses applied to the cell surface alter the cyclic AMP signalling cascade and downstream gene transcription by modulating local release of signals generated by activated integrin receptors in a G-protein-dependent manner, whereas distortion of integrins in the absence of receptor occupancy has no effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Stress-and integrin-dependent control of the cAMP signalling cascade.
Figure 2: Mechanistic analysis of integrin-dependent mechanotransduction.

Similar content being viewed by others

References

  1. Gudi, S., Nolan, J. P. & Frangos, J. A. Proc. Natl. Acad. Sci. USA 95, 2515–2519 (1998).

    Article  CAS  Google Scholar 

  2. Sukharev, S. I., Martinac, B., Arshavsky, V. Y. & Kung, C. Biophys. J. 65, 177–183 (1993).

    Article  CAS  Google Scholar 

  3. Wang, N., Butler, J. P. & Ingber, D. E. Science 260, 1124–11127 (1993).

    Article  CAS  Google Scholar 

  4. Plopper, G. E., McNamee, H. P., Dike, L. E., Bojanowski, K. & Ingber, D. E. Mol. Biol. Cell 6, 1349–1365 (1995).

    Article  CAS  Google Scholar 

  5. Wang, N. & Ingber, D. E. Biophys. J. 66, 2181–2189 (1994).

    Article  CAS  Google Scholar 

  6. Fong, J. H. & Ingber, D. E. Biochem. Biophys. Res. Commun. 221, 19–24 (1996).

    Article  CAS  Google Scholar 

  7. Gordon, E. A., Fenton, J. W. 2nd & Carney, D. H. Annl. NY Acad. Sci. 485, 249–263 (1986).

    Article  CAS  Google Scholar 

  8. Harootunian, A., Adams, S., Wen, W., Meinkoth, J., Taylor, S. & Tsien, R. Mol. Biol. Cell 4, 993–1002 (1993).

    Article  CAS  Google Scholar 

  9. Gonzalez, G. & Montminy, M. Cell 59, 675–680 (1989).

    Article  CAS  Google Scholar 

  10. Chrivia, J., Kwok, R., Lamb, N., Hagiwara, M., Montminy, M. & Goodman, R. Nature 365, 855–859 (1993).

    Article  CAS  Google Scholar 

  11. Ginty, D. et al. Science 260, 238–241 (1993).

    Article  CAS  Google Scholar 

  12. Miyamoto, S. et al. J. Cell Biol. 131, 791–805 (1995).

    Article  CAS  Google Scholar 

  13. Glogauer, M., Ferrier, J. & McCulloch, C. A. Am. J. Physiol. 269, C1093–C1104 (1995).

    Article  CAS  Google Scholar 

  14. Gudi, S. R., Lee, A. A., Clark, C. B. & Frangos, J. A. Am. J. Physiol. 274, C1424–C1428 (1998).

    Article  CAS  Google Scholar 

  15. Vandenburgh, H. H., Shansky, J., Solerssi, R., Chromiak, J. J. Cell Physiol. 163, 285–294 (1995).

    Article  CAS  Google Scholar 

  16. Frazier, W. A. et al. J. Biol. Chem. 274, 8554–8560 (1999).

    Article  CAS  Google Scholar 

  17. Shyy, J. Y. & Chien, S. Curr. Opin. Cell Biol. 9, 707–713 (1997).

    Article  CAS  Google Scholar 

  18. Gudi, S. R., Clark, C. B. & Frangos, J. A. Circ. Res. 79, 834–839 (1996).

    Article  CAS  Google Scholar 

  19. Davies, P. F., Robotewskyj, A. & Griem, M. L. J. Clin. Invest. 93, 2031–2038 (1994).

    Article  CAS  Google Scholar 

  20. Moore, T. M., Chetham, P. M., Kelly, J. J., & Stevens, T. Am. J. Physiol. 275, L203–L222 (1998).

    CAS  Google Scholar 

  21. Huang, S., Chen, C. S. & Ingber, D. E. Mol. Biol. Cell 9, 3179–3193 (1998).

    Article  CAS  Google Scholar 

  22. Clarke, M. S. & McNeil, P. L. J. Cell Sci. 102, 533–541 (1992).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Greenberg and S. Taylor for essential reagents, N. Wang and J. Fredberg for assistance with magnetic twisting cytometry, and J. Kornhauser, W. Wen, and G. Rodan for helpful suggestions. This work was supported by grants from NIH (CA55833 and HL33009) and NASA (NAG5-4839), NIH Dentist Scientist award to Harvard School of Dental Medicine (DE00275 to C.M.), and a Howard Hughes predoctoral fellowship (F.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald E. Ingber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, C., Alenghat, F., Rim, P. et al. Mechanical control of cyclic AMP signalling and gene transcription through integrins. Nat Cell Biol 2, 666–668 (2000). https://doi.org/10.1038/35023621

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35023621

  • Springer Nature Limited

This article is cited by

Navigation