Skip to main content
Log in

Optimal shapes of compact strings

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Optimal geometrical arrangements, such as the stacking of atoms, are of relevance in diverse disciplines1,2,3,4,5. A classic problem is the determination of the optimal arrangement of spheres in three dimensions in order to achieve the highest packing fraction; only recently has it been proved1,2 that the answer for infinite systems is a face-centred-cubic lattice. This simply stated problem has had a profound impact in many areas3,4,5, ranging from the crystallization and melting of atomic systems, to optimal packing of objects and the sub-division of space. Here we study an analogous problem—that of determining the optimal shapes of closely packed compact strings. This problem is a mathematical idealization of situations commonly encountered in biology, chemistry and physics, involving the optimal structure of folded polymeric chains. We find that, in cases where boundary effects6 are not dominant, helices with a particular pitch-radius ratio are selected. Interestingly, the same geometry is observed in helices in naturally occurring proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Examples of optimal strings.
Figure 2: Optimal string with local constraint.
Figure 3: Packing of collagen helices.

Similar content being viewed by others

References

  1. Sloane, N. J. A. Kepler's conjecture confirmed. Nature 395, 435–436 (1998).

    Article  ADS  CAS  Google Scholar 

  2. Mackenzie, D. Mathematics—proving the perfection of the honeycomb. Science 285, 1339–1340 ( 1999).

    Article  Google Scholar 

  3. Woodcock, L. V. Entropy difference between the face-centred cubic and the hexagonal close-packed crystal structures. Nature 385, 141– 143 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Car, R. Crystal structure—how hard spheres stack up. Nature 385 , 115–116 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Cipra, B. Mathematics—packing challenge mastered at last. Science 281, 1267 (1998).

    Article  CAS  Google Scholar 

  6. Stewart, I. Tight tins for round sardines. Sci. Am. Feb. 80– 82 (1998).

  7. Buck, G. & Orloff, J. A simple energy function for knots. Topol. Appl. 61, 205–214 (1995).

    Article  MathSciNet  Google Scholar 

  8. Katritch, V. et al. Geometry and physics of knots. Nature 384, 142–145 (1996).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  9. Katritch, V., Olson, W. K., Pieranski, P., Dubochet, J. & Stasiak, A. Properties of ideal composite knots. Nature 388, 148–151 (1997).

    Article  ADS  CAS  Google Scholar 

  10. Gonzalez, O. & Maddocks, J. H. Global curvature, thickness and the ideal shapes of knots. Proc. Natl Acad. Sci. USA 96, 4769–4773 (1999).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  11. Buck, G. Four thirds power law for knots and links. Nature 392 , 238–239 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Cantarella, J., Kusner, R. B. & Sullivan, J. M. Tight knot values deviate from linear relations. Nature 392, 237–238 (1998).

    Article  ADS  CAS  Google Scholar 

  13. Rose, G. D. & Seltzer, J. P. A new algorithm for finding the peptide chain turns in a globular protein. J. Mol. Biol. 113, 153–164 (1977).

    Article  CAS  Google Scholar 

  14. Micheletti, C., Maritan, A. & Banavar, J. R. Protein structures and optimal folding from a geometrical variational principle. Phys. Rev. Lett. 82, 3372–3375 (1999).

    Article  ADS  CAS  Google Scholar 

  15. Maritan, A., Micheletti, C. & Banavar, J. R. Role of secondary motifs in fast folding polymers: a dynamical variational principle. Phys. Rev. Lett. 84, 3009–3012 (2000).

    Article  ADS  CAS  Google Scholar 

  16. Sali, A., Shakhnovich, E. & Karplus, M. How does a protein fold? Nature 369, 248–251 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Creighton, T. E. Proteins—Structures and Molecular Properties 182– 188 (Freeman, New York, 1993).

    Google Scholar 

  18. Yee, D. P., Chan, H. S., Havel, T. F. & Dill, K. A. Does compactness induce secondary structure in proteins? Study of poly-alanine chains computed by distance geometry. J. Mol. Biol. 241, 557–573 (1994).

    Article  CAS  Google Scholar 

  19. Socci, N. D., Bialek, W. S. & Onuchic, J. N. Properties and origins of protein secondary structure. Phys. Rev. 49, 3440–3443 (1994).

    ADS  CAS  Google Scholar 

  20. Sokal, A. D. Monte Carlo methods for the self-avoiding walk. Nucl. Phys. B47, 172–179 (1996).

    Google Scholar 

Download references

Acknowledgements

This work was supported by INFN, NASA and The Donors of the Petroleum Research Fund administered by the American Chemical Society. A.T. thanks the Physics Department of Università degli Studi di Padova, Padova, Italy, for its hospitality.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maritan, A., Micheletti, C., Trovato, A. et al. Optimal shapes of compact strings. Nature 406, 287–290 (2000). https://doi.org/10.1038/35018538

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35018538

  • Springer Nature Limited

This article is cited by

Navigation