Skip to main content
Log in

A suppressor of a yeast splicing mutation (prp8-l) encodes a putative ATP-dependent RNA helicase

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

FIVE small nuclear RNAs (snRNAs) are required for nuclear pre-messenger RNA splicing: Ul, U2, U4, U5 and U61,2. The yeast Ul and U2 snRNAs base-pair to the 5′ splice site and branch-point sequences of introns respectively1. The role of the U5 and U4/U6 small nuclear ribonucleoprotein particles (snRNPs) in splicing is not clear, though a catalytic role for the U6 snRNA has been proposed3. Less is known about yeast splicing factors, but the availability of genetic techniques in Saccharomyces cerevisiae has led to the identification of mutants deficient in nuclear pre-mRNA splicing (prp2-prp27)4,5. Several PRP genes have now been cloned and their protein products characterized. The PRP8 protein is a component of the US snRNP and associates with the U4/U6 snRNAs/snRNP to form a multi-snRNP particle believed to be important for spliceosome assembly6. We have isolated extragenic suppressors of the prp8–l mutation of S. cerevisiae and present here the preliminary characterization of one of these suppressors, spp81. The predicted amino-acid sequence of the SPP81protein shows extensive similarity to a recently identified family of proteins thought to possess ATP–dependent RNA helicase activity. The possible role of this putative helicase in nuclear pre-mRNA splicing is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krainer, A. R. & Maniatis, T. in Transcription and Splicing 131–206 (IRL, Oxford, 1988).

    Google Scholar 

  2. Guthrie, C. & Patterson, B. A. Rev. Genet. 22, 387–419 (1988).

    Article  CAS  Google Scholar 

  3. Brow, D. A. & Guthrie, C. Nature 334, 213–218 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Hartwell, L. H. J. Bacteriol. 93, 1662–1670 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Vijayraghaven, U., Company, M. & Abelson, J. Genes Dev. 3, 1206–1216 (1989).

    Article  Google Scholar 

  6. Lossky, M., Anderson, G. J., Jackson, S. P. & Beggs, J. D. Cell 51, 1019–1026 (1987).

    Article  CAS  PubMed  Google Scholar 

  7. Jackson, S. P., Lossky, M. & Beggs, J. D. Molec. cell. Biol. 8, 1067–1075 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pearson, N. J., Thorburn, P. C. & Haber, J. E. Molec. cell. Biol. 2, 571–577 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Struhl, K. Nucleic. Acids Res. 13, 8587–8601 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Struhl, K., Strinchcombe, D. T., Scherer, S. & Davis, R. R. Proc. natn. Acad. Sci. U.S.A. 76, 1035–1039 (1979).

    Article  ADS  CAS  Google Scholar 

  11. Struhl, K. & Davis, R. R. J. molec. Biol. 136, 309–322 (1980).

    Article  CAS  PubMed  Google Scholar 

  12. Ford, M. J., Anton, I. A. & Lane, D. P. Nature 332, 736–738 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Linder, P. et al. Nature 337, 121–122 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Iggo, R. D. & Lane, D. P. EMBO J. 8, 1827–1831 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hirling, H., Scheffner, M., Restle, T. & Stahl, M. Nature 339, 562–564 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Leroy, P., Alzari, P., Sassoon, D., Wolgemuth, D. & Fellous, M. Cell 57, 549–559 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Seraphin, B., Simon, M., Boulet, Z. & Faye, G. Nature 334, 84–87 (1989).

    Article  ADS  Google Scholar 

  18. Siliciano, P. G., Brow, D. A., Roiha, H. & Guthrie, C. Cell 50, 585–592 (1988).

    Article  Google Scholar 

  19. Lamond, A. I., Konarska, M. M., Grabowski, P. J. & Sharp, P. A. Proc. natn. Acad. Sci. U.S.A. 85, 411–415 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Dalbadie-McFarland, G. & Abelson, J. Proc. natnl. Acad. Sci. U.S.A. 87, 4236–4240 (1990).

    Article  ADS  CAS  Google Scholar 

  21. Gallwitz, D. & Sures, I. Proc. natn. Acad. Sci. U.S.A. 77, 2546–2550 (1980).

    Article  ADS  CAS  Google Scholar 

  22. Feinberg, A. P. & Vogelstein, B. Anal. Biochem. 132, 6–13 (1983).

    Article  CAS  PubMed  Google Scholar 

  23. Hopper, A. K., Banks, F. & Evangelidis, V. Cell 14, 211–219 (1978).

    Article  CAS  PubMed  Google Scholar 

  24. Beltzer, J. P., Chang, L.-F., Hinkkenen, A. E. & Kohlhaw, G. B. J. biol. Chem. 261, 5160–5167 (1986).

    CAS  PubMed  Google Scholar 

  25. Henikoff, S. Gene 28, 351–359 (1984).

    Article  CAS  PubMed  Google Scholar 

  26. Higgins, D. G. & Sharp, P. M. CABIOS 5, 151–153 (1989).

    CAS  PubMed  Google Scholar 

  27. Sherman, F., Fink, G. R. & Hicks, J. B. Methods in Yeast Genetics (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1982).

    Google Scholar 

  28. Chen, W. & Struhl, K. EMBO J. 4, 3273–3280 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ito, H., Fukuda, Y., Murata, K. & Kimura, A. J. Bact. 153, 163–168 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Jamieson, D. J. & Beggs, J. D. Molec. Microbiol. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamieson, D., Rahe, B., Pringle, J. et al. A suppressor of a yeast splicing mutation (prp8-l) encodes a putative ATP-dependent RNA helicase. Nature 349, 715–717 (1991). https://doi.org/10.1038/349715a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/349715a0

  • Springer Nature Limited

This article is cited by

Navigation