Skip to main content
Log in

A homologue of the bacterial heat-shock gene DnaJ that alters protein sorting in yeast

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

HEAT-shock proteins have been implicated in assembly of protein complexes1, correct protein folding2 and uptake of proteins into organdies3–4. In Escherichia coli, the heat-shock protein DnaJ and the HspTO homologue, DnaK, act together to disassemble a protein complex involved in bacteriophage λ replication5. We report the identification of SCJ1, a gene in the yeast Saccharomyces cerevisiae that encodes a homologue of the bacterial DnaJ protein. SCJ1 was identified by a genetic screen in which increased expression of candidate genes results in missorting of a nuclear-targeted test protein. The predicted amino-acid sequence of SCJ1 is 37% identical to the entire E. coli DnaJ protein. Hybridization experiments indicate that there is a family of yeast genes related to SCJ1. These findings suggest that the HspTO DnaK-DnaJ interaction is general to eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ellis, R. J. & Hemmingsen, S. M. Trends biochem. Sci. 14, 339–342 (1989).

    Article  CAS  Google Scholar 

  2. Rothman, J. E. Cell 59, 591–601 (1989).

    Article  CAS  Google Scholar 

  3. Deshaies, R. J., Koch, B. D., Werner-Washburne, M., Craig, E. A. & Schekman, R. Nature 332, 800–805 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Chirico, W. J., Waters, M. G. & Blobel, G. Nature 332, 805–810 (1988).

    Article  ADS  CAS  Google Scholar 

  5. Liberek, K., Georgopoulos, C. & Zylicz, M. Proc. natn. Acad. Sci. U.S.A. 85, 6632–6636 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Sadler, I. et al. J. Cell Biol. 109, 2665–2675 (1989).

    Article  CAS  Google Scholar 

  7. Ohki, M., Tamura, F., Nishimura, S. & Uchida, H. J. biol. Chem. 261, 1782–1785 (1986).

    Google Scholar 

  8. Bardwell, J. C. A. et al. J. biol. Chem. 261, 1782–1785 (1986).

    CAS  Google Scholar 

  9. Lathigra, R. B., Young, D. B., Sweetser, D. & Young, R. A. Nucleic Acids Res. 16, 1636–1638 (1988).

    Article  CAS  Google Scholar 

  10. Rothblatt, J. A., Deshaies, R. J., Sanders, S. L., Daum, G. & Schekman, R. J. Cell Biol. 109, 2641–2652 (1989).

    Article  CAS  Google Scholar 

  11. Hartl, F.-U., Pfanner, N., Nicholson, D. W. & Neupert, W. Biochim. biophys. Acta 989, 1–45 (1989).

    Article  Google Scholar 

  12. von Heijne, G. Curr. top. Membranes Transp. 24, 151–179 (1985).

    Article  CAS  Google Scholar 

  13. Munro, S. & Pelham, H. R. B. Cell 46, 291–300 (1986).

    Article  CAS  Google Scholar 

  14. Lebowitz, J. H., Zylicz, M., Georgopoulos, C. & McMacken, R. Proc. natn. Acad. Sci. U.S.A. 82, 3988–3992 (1985).

    Article  ADS  CAS  Google Scholar 

  15. Zylicz, M., Ang, D., Liberek, K. & Georgopoulos, C. EMBO J. 8, 1601–1608 (1989).

    Article  CAS  Google Scholar 

  16. Georgopoulos, C. P. & Herskowitz, I. in The Bacteriophage Lambda (ed. Hershey, A. D.) 553–564 (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1971).

    Google Scholar 

  17. Gaitanaris, G. M., Papavassiliou, A. G., Rubock, P., Silverstein, S. J. & Gottesman, M. E. Cell 61, 1013–1020 (1990).

    Article  CAS  Google Scholar 

  18. Kang, P.-J. et al. Nature 348, 137–142 (1990).

    Article  ADS  CAS  Google Scholar 

  19. Ito, H., Fukado, Y., Murata, K. & Kimura, A. J. Bacteriol. 153, 163–168 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Carlson, M. & Botstein, D. Cell 28, 145–154 (1982).

    Article  CAS  Google Scholar 

  21. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  22. Devereux, J., Haeberli, P. & Smithies, O. Nucleic Acids Res. 12, 387–395 (1984).

    Article  CAS  Google Scholar 

  23. Sherman, F., Fink, G. R. & Hicks, J. B. Methods in Yeast Genetics (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1986).

    Google Scholar 

  24. Maniatis, T., Fritsch, E. F. and Sambrook, J. Molecular Cloning: a Laboratory Manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 1982).

    Google Scholar 

  25. Walworth, N. C., Goud, B., Ruohola, H. and Novick, P. J. Methods Cell Biol. 31, 335–354 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blumberg, H., Silver, P. A homologue of the bacterial heat-shock gene DnaJ that alters protein sorting in yeast. Nature 349, 627–630 (1991). https://doi.org/10.1038/349627a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/349627a0

  • Springer Nature Limited

This article is cited by

Navigation