Skip to main content
Log in

Crystallization of an inorganic phase controlled by a polymer matrix

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

BIOLOGICAL composite materials such as bones, teeth and shells consist of a polymer matrix reinforced by an inorganic phase which forms in the matrix1. These materials are distinguished from synthetic composites by the high degree of organization and regularity displayed by the inorganic phase: inorganic minerals of uniform size, morphology and crystallographic orientation can be formed in ordered arrays in living cells. Such a process has until now not been realized in synthetic systems, although the recent interest in nanoscience2–6has stimulated much research in the area. We report here an example of a synthetic process that produces composite materials analogous to those produced by natural biomineralization. The inorganic/organic in situ synthesized composites display controlled inorganic crystal size, morphology and orientation, which are determining features of type II, or matrix-mediated7, biocomposites. The synthetic factors that must be optimized to give biomimetic properties to synthetic composites are strong binding of the inorganic reagents by the organic matrix (molecular complementarity); good 'solvation' of the inorganic reagents by the polymer; and an ordered, regular polymer environment in which to induce nucleation (matrix preorganization)1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mann, S. Nature 322, 119–124 (1988).

    Article  ADS  Google Scholar 

  2. Mann, S., Heywood, B. R., Rajam, S. & Birchall, J. D. Nature 334, 692–694 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Azoz, N., Calvert, P. D., Kadim, M., McCaffery, A. J. & Seddon, K. Nature 344, 49–51 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Berman, A., Addadi, L. & Weiner, S. Nature 331, 546–548 (1988).

    Article  ADS  CAS  Google Scholar 

  5. Fendler, J. H. Chem. Rev. 87, 877–899 (1987).

    Article  CAS  Google Scholar 

  6. Andres, R. P. et al. J. Mater. Res. 4, 704–736 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Calvert, P. & Mann, S. J. Mater. Sci. 23, 3801–3815 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Herron, N. et al. J. Am. chem. Soc. 111, 530–540 (1989).

    Article  CAS  Google Scholar 

  9. Abel, E. W. & Jenkins, C. R. J. Organometall. Chem. 14, 285–287 (1968).

    Article  CAS  Google Scholar 

  10. Rossetti, R., Ellison, J., Gibson, J. M. & Brus, L. E. J. chem. Phys. 80, 4464–4469 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Yuan, T., Cabasso, I. & Fendler, J. H. Chem. Mater. 2, 226–229 (1990).

    Article  CAS  Google Scholar 

  12. Xu, S., Zhao, X. K. & Fendler, J. H. Adv. Mater. 2, 183–185 (1990).

    Article  CAS  Google Scholar 

  13. Steigerwald, M. L. et al. J. Am. chem. Soc. 110, 3046–3050 (1988).

    Article  CAS  Google Scholar 

  14. Iwamoto, I., Saito, Y., Isihara, H. & Tadokoro, H. J. Polym. Sci. 6, 1509–1525 (1968).

    CAS  Google Scholar 

  15. Mann, S. Struct. Bond. (Berlin) 54, 125–174 (1983).

    Article  CAS  Google Scholar 

  16. Osugi, J., Shimuzu, K., Nakamura, T. & Onoder, A. Rev. Phys. Chem. Jap. 36, 59–73 (1966).

    CAS  Google Scholar 

  17. Dameron, C. T. et al. Nature 338, 596–597 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Dameron, C. T. & Winge, D. R. Inorg. Chem. 29, 1343–1348 (1990).

    Article  CAS  Google Scholar 

  19. Landau, E. H., Levanon, M., Leiserowitz, L., Lahav, M. & Sagiv, J. Nature 318, 353–356 (1985).

    Article  ADS  CAS  Google Scholar 

  20. Mann, S. J., Heywood, B. R., Rajam, S. & Birchall, J. D. Nature 334, 692–695 (1988).

    Article  ADS  CAS  Google Scholar 

  21. Mann, S., Frankel, R. B. & Blakemore, R. P. Nature 310, 405–407 (1985).

    Article  ADS  Google Scholar 

  22. Mann, S. et al. Adv. Mater. 2, 257–261 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bianconi, P., Lin, J. & Strzelecki, A. Crystallization of an inorganic phase controlled by a polymer matrix. Nature 349, 315–317 (1991). https://doi.org/10.1038/349315a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/349315a0

  • Springer Nature Limited

This article is cited by

Navigation