Skip to main content
Log in

Control of pore-water chemistry at the base of the Florida escarpment by processes within the platform

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

PORE waters collected from seep sediments hosting active chemosynthetic communities1,2 tend to be rich in sulphide, chloride and ammonium and depleted in sulphate relative to the concentrations in sea water. To investigate the source of the energy-rich compounds and the processes causing low sulphate concentrations in seep-sediment pore waters, we have measured the sulphur isotope composition, δ34S, of pore waters from seep sediments at the base of the West Florida escarpment. The isotopic composition of pore-water sulphate remains approximately constant as its concentration is depleted, indicating that processes within the Florida platform, rather than microbial processes at seep sites, control pore-water chemistry in these sediments. The composition of the seep brines, deduced from a linear mixing model, provides information on processes deep within the platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Paull, C. K. et al. Science 226, 965–967 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Paull, C. K. & Neuman, A. C. Geology 15, 545–548 (1987).

    Article  ADS  Google Scholar 

  3. Cavanaugh, C. M., Levering, R. R., Maki, J. S., Mitchell, R. & Lidstrom, M. E. Nature 325, 346–348 (1987).

    Article  ADS  Google Scholar 

  4. Cary, C., Fry, B., Feldbeck, H. & Vetter, R. Mar. Biol. 100, 411–418 (1989).

    Article  Google Scholar 

  5. Paull, C. K. et al. Nature 342, 166–168 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Paull, C. K., Spiess, F., Curray, J. & Twitchell, D. Am. Ass. Petrol. Geol. Bull. 72, 233 (1988).

    Google Scholar 

  7. Chanton, J. P., Martens, C. S. & Paull, C. K. Eos 69, 1119 (1988).

    Google Scholar 

  8. Martens, C. S., Chanton, J. P. & Paull, C. K. Geology (submitted).

  9. Commeau, R. F., Paull, C. K., Commeau, J. A. & Poppe, L. J. Earth planet. Sci. Lett 82, 62–74 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Goldhaber, M. B. & Kaplan, I. R. in The Sea Vol. 5 (ed. Goldberg, E.) 569–655 (Wiley, New York, 1974).

    Google Scholar 

  11. Rees, C. E., Jenkins, W. J. & Monster, J. Geochim. cosmochim. Acta 42, 377–382 (1978).

    Article  ADS  CAS  Google Scholar 

  12. Paull, C. K. et al. Mar. Geol. (submitted).

  13. Manheim, F. T. & Horn, M. K. Southeastern Geol. 9, 215–236 (1968).

    CAS  Google Scholar 

  14. Kohout, F. A. Gulf Coast Ass. geol. Trans. 17, 339–343 (1967).

    Google Scholar 

  15. Kohout, F. A., Henry, H. R. & Banks, J. E. in The Geothermal Nature of the Floridan Plateau, Spec. Publ. 21 (eds Smith, D. L. & Griffin, G. M.) 1–43 (Florida Department of Natural Resources. Tallahassee, 1977).

    Google Scholar 

  16. Claypool, G. E., Holser, W. T., Kaplan, I. R., Sakai, H. & Zak, I. Chem. Geol. 28, 199–260 (1980).

    Article  ADS  CAS  Google Scholar 

  17. Rye, R. O., Back, W., Hanshaw, B. B., Rightmire, C. T. & Pearson, F. J. Geochim. cosmochim. Acta 45, 1941–1950 (1981).

    Article  ADS  CAS  Google Scholar 

  18. Orr, W. L. in Proc. 7th Congress, Int. Mtg Org. Geochem. (eds Campos, R. & Goni, J.) 571–597 (Empresa Nacional, Madrid, 1975).

    Google Scholar 

  19. Ohmoto, H. & Rye, R. O. in Geochemistry of Hydrothermal Ore Deposits (ed. Barnes, H. L.) 509–567 (Wiley, New York, 1979).

    Google Scholar 

  20. Ohmoto, H. Rev. Miner. 16, 491–561 (1986).

    Google Scholar 

  21. Trudinger, P. A., Chambers, L. A. & Smith, J. W. Can. J. Earth Sci. 22, 1910–1918 (1985).

    Article  ADS  CAS  Google Scholar 

  22. Heydari, E. & Moore, C. H. Geology 17, 1080–1084 (1989).

    Article  ADS  CAS  Google Scholar 

  23. Sassen, R. & Moore, C. H. Geol. Soc. Am. Bull. 72, 649–663 (1988).

    CAS  Google Scholar 

  24. Reel, D. A. & Griffin, G. M. Gulf Coast Ass. geol. Soc. 21, 31–36 (1971).

    Google Scholar 

  25. Clayton, R. N. et al. J. geophys. Res. 71, 3869–3882 (1966).

    Article  ADS  CAS  Google Scholar 

  26. Krouse, H. R., Viau, C. A., Eliuk, L. S., Ueda, A. & Halas, S. Nature 333, 415–419 (1988).

    Article  ADS  CAS  Google Scholar 

  27. Applin, P. L. & Applin, E. R. U.S. geol. Surv. prof. Pap. 447 (U.S. Govt Printing Office, Washington, DC, 1965).

  28. Maher, J. C. U.S. geol. Surv. prof. Pap. 659 (U.S. Govt Printing Office, Washington, DC, 1971).

  29. Banks, J. E. Bull. Am. Ass. Petrol. Geol. Bull. 44, 1737–1748 (1960).

    Google Scholar 

  30. Palacas, J. G., Anders, D. E. & King, J. D. in Studies in Geology Vol. 18 (ed. Palacas, J.) 71–96 (Am. Ass. Petrol. Geol., Tulsa, 1984).

    Google Scholar 

  31. Evans, R. & Kirkland, E. W. in Evaporites and Hydrocarbons (ed. Schriber, C.) 256–299 (Columbia University Press, New York, 1988).

    Google Scholar 

  32. Martens, C. S. & Berner, R. A. Science 185, 1167–1169 (1974).

    Article  ADS  CAS  Google Scholar 

  33. Baker, P. & Kastner, M. Science 213, 214–216 (1981).

    Article  ADS  CAS  Google Scholar 

  34. Chanton, J. P., Martens, C. S. & Goldhaber, M. B. Geochim. cosmochim. Acta 51, 1201–1208 (1987).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chanton, J., Martens, C. & Paull, C. Control of pore-water chemistry at the base of the Florida escarpment by processes within the platform. Nature 349, 229–231 (1991). https://doi.org/10.1038/349229a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/349229a0

  • Springer Nature Limited

This article is cited by

Navigation