Skip to main content

Advertisement

Log in

Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li–Fraumeni syndrome

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

TUMOUR suppressor genes, whose usual function seems to be controlling normal cell proliferation1,2, have been implicated in many inherited and sporadic forms of malignancies (for reviews, see refs 3 and 4). Much evidence supports the concept of tumour formation by loss-of-function mutations in suppressor genes, as predicted by the two-hit model of Knudson5 and DeMars6. The suppressor gene, p53, is affected in such a manner by numerous mutations, which occur in a variety of human tumours7-10. These mutations usually represent the loss of one allele and the substitution of a single base in the other. We have now analysed the p53 gene in a family affected by Li–Fraumeni syndrome11, a rare autosomal dominant syndrome characterized by the occurrence of diverse mesenchymal and epithelial neoplasms at multiple sites. In some instances the neoplasms seem to be related to exposure to carcinogens, including ionizing radiation. The Li–Fraumeni family that we studied had noncancerous skin fibroblasts (NSF) with an unusual radiation-resistant phenotype12–15. DNA derived from the NSF cells of four family members, spanning two generations, had the same point mutation in codon 245 (GGC→GAC) of the p53 gene. This mutation leads to substitution of aspartic acid for glycine in one of the regions identified9 as a frequent target of point mutations in p53. The NSF cell lines with the mutation also retained the normal p53 allele. This inherited p53 mutation may predispose the members of this family to increased susceptibility to cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cooper, J. A. & Whyte, P. Cell 58, 1009–1011 (1989).

    Article  CAS  Google Scholar 

  2. Levine, A. J. Virology 177, 419–426 (1990).

    Article  CAS  Google Scholar 

  3. Seemayer, T. A. & Cavenee, W. K. Lab. Invest. 60, 585 (1989).

    CAS  PubMed  Google Scholar 

  4. Stanbridge, E. J. Cancer Cells 1, 31–33 (1989).

    CAS  PubMed  Google Scholar 

  5. Knudson, A. G. Proc. natn. Acad. Sci. U.S.A. 68, 820–823 (1971).

    Article  ADS  Google Scholar 

  6. DeMars, R. In 23rd A. Symp. Fund. Cancer Res. 1969, 105–106 (William and Wiklings, Baltimore, 1970).

    Google Scholar 

  7. Baker, S. J. et al. Science 244, 217–220 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Takahashi, R. et al. Science 246, 491–494 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Nigro, J. M. et al. Nature 342, 705–708 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Mulligan, L. M., Matlashewski, G. J., Scrable, H. J. & Cavenee, W. K. Proc. natn. Acad. Sci. U.S.A. 87, 5863–5867 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Li, F. P. & Fraumeni, J. F. Jr Ann. intern. Med. 71, 747–751 (1969).

    Article  CAS  Google Scholar 

  12. Blattner, W. A. et al. J. Am. med. Ass. 241, 259–261 (1979).

    Article  CAS  Google Scholar 

  13. Bech-Hansen, N. T. et al. Lancet i, 1335–1337 (1981).

    Article  Google Scholar 

  14. Chang, E. H. et al. Science 237, 1036–1039 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Pirollo, K. F. et al. Int. J. Radiat. Biol. 55, 783–796 (1989).

    Article  CAS  Google Scholar 

  16. Gannon, J. V., Greaves, R., Iggo, R. & Lane, D. P. EMBO J. 9, 1595–1602 (1990).

    Article  CAS  Google Scholar 

  17. Eliyahu, D. et al. Oncogene 3, 313–321 (1988).

    CAS  PubMed  Google Scholar 

  18. Herskowitz, I. Nature 329, 219–222 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Finlay, C. A., Hinds, P. W. & Levine, A. J. Cell 57, 1083–1093 (1989).

    Article  CAS  Google Scholar 

  20. Mercer, W. E. et al. Proc. natn. Acad. Sci. U.S.A. 87, 6166–6170 (1990).

    Article  ADS  CAS  Google Scholar 

  21. Baker, S. J., Markowitz, S., Fearon, E. R., Willson, J. K. V. & Vogelstein, B. Science 249, 912–915 (1990).

    Article  ADS  CAS  Google Scholar 

  22. Lane, D. P. & Crawford, L. V. Nature 278, 261–263 (1979).

    Article  ADS  CAS  Google Scholar 

  23. Linzer, D. I. H. & Levine, A. J. Cell 17, 43–52 (1979).

    Article  CAS  Google Scholar 

  24. Sarnow, P., Ho,, Y. S., Williams, J. & Levine, A. J. Cell 28, 387–394 (1982).

    Article  CAS  Google Scholar 

  25. Werness, B. A., Levine, A. J. & Howley, P. M. Science 248, 76–79 (1990).

    Article  ADS  CAS  Google Scholar 

  26. Mercer, W. E., Nelson, D., Deleo, A. B., Old, L. J. & Baserga, R. Proc. natn. Acad. Sci. U.S.A. 79, 6309–6312 (1982).

    Article  ADS  CAS  Google Scholar 

  27. Malkin, D. et al. Science 250, 1233–1238 (1990).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, S., Zou, Z., Pirollo, K. et al. Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li–Fraumeni syndrome. Nature 348, 747–749 (1990). https://doi.org/10.1038/348747a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/348747a0

  • Springer Nature Limited

This article is cited by

Navigation