Skip to main content
Log in

Localization of dystrophin to postsynaptic regions of central nervous system cortical neurons

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

MODERATE non-progressive cognitive impairment is a consistent feature of Duchenne muscular dystrophy (DMD)1,2, although no central nervous system (CNS) abnormality has been identified3. Recent studies have elucidated the molecular defect in DMD, including the absence of the protein dystrophin in affected individuals4. Normal brain tissue contains dystrophin messenger RNA5,6 and dystrophin is present in low abundance in the brain7 and seems to be regulated in this tissue, at least in part, by a promoter that differs from that in muscle8,9. Until now, antibodies and immunocytochemical methods used to demonstrate dystrophin at the plasma membrane of mouse and human muscle have proven inadequate to localize precisely dystrophin in the mammalian CNS. We have now made an antibody (anti 6-10) which is much more sensitive than those previously available to immunolabel dystrophin in the CNS. Using this antibody, we found that in the mouse, dystrophin is particularly abundant in the neurons of the cerebral and cerebellar cortices, and that it is localized at postsynaptic membrane specializations. Dystrophin may have a different role in neurons than in muscle, and an alteration at the synaptic level may be the basis of the cognitive impairment in DMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duchenne, G. B., in De I'Electrisation Localisée et son Application á la Pathologie et á la Therapeutique 3rd edn (Bailliere, Paris, 1872).

    Google Scholar 

  2. Emery, A. H. in Duchenne Muscular Dystrophy Revised edn, 99–100 (Oxford University Press, New York, 1988).

    Google Scholar 

  3. Dubowitz, V. & Crome, L. Brain 92, 805–808 (1969).

    Article  CAS  Google Scholar 

  4. Hoffman, E. P. & Kunkel, L. M. Neuron 2, 1019–1029 (1989).

    Article  CAS  Google Scholar 

  5. Nudel, U., Robzyk, K. & Yaffe, D. Nature 331, 635–638 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Chamberlain, J. S. et al. Science 239, 1416–1418 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Hoffman, E. P., Hudecki, M. S., Rosenberg, P. A., Pollina, C. M. & Kunkel, L. M. Neuron 1, 411–420 (1988).

    Article  CAS  Google Scholar 

  8. Feener, C. A., Koenig, M. & Kunkel, L. M. Nature 338, 509–511 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Boyce, F. M., Beggs, A. H., Feener, C. A. & Kunkel, L. M. Proc. natn. Acad. Sci. U.S.A. (in the press).

  10. Hoffman, E. P., Brown, R. H. & Kunkel, L. P. Cell 51, 919–928 (1987).

    Article  CAS  Google Scholar 

  11. Koenig, M., Monaco, A. P. & Kunkel, L. P. Cell 53, 219–228 (1988).

    Article  CAS  Google Scholar 

  12. Coleman, T. R., Fishkind, D. J., Mooseker, M. S. & Morrow, J. S. Cell Motll Cytoskel. 12, 225–247 (1989).

    Article  CAS  Google Scholar 

  13. Beam, K. G. Nature 333, 798 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Chang, H. W., Bock, E. & Bonilla, E. J. biol. Chem. 264, 20831–20834 (1989).

    CAS  PubMed  Google Scholar 

  15. Bulfield, G., Siller, W. G., Wight, P. A. L. & Moore, K. J. Proc. natn. Acad. Sci. U.S.A. 81, 1189–1192 (1984).

    Article  ADS  CAS  Google Scholar 

  16. Marin-Padilla, M. J. comp. Neurol. 167, 63–81 (1985).

    Article  Google Scholar 

  17. Purpura, D. P. in Brain Mechanisms in Mental Retardation (eds Buchwald, N. A. & Brazer, M. B. D.) 141–169 (Academic, New York, 1985).

    Google Scholar 

  18. Suetsugu, M. & Mahraein, P. Acta neuropath. 50, 207–210 (1980).

    Article  CAS  Google Scholar 

  19. Takashima, S., Becker, L. E., Armstrong, D. L. & Chan, F. Brain Res. 225, 1–21 (1981).

    Article  CAS  Google Scholar 

  20. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  21. Smith, D. B. & Johnson, K. S. Gene 67, 31–40 (1988).

    Article  CAS  Google Scholar 

  22. Byers, T. J., Dubreuil, R., Branton, D., Kiehart, D. P. & Goldstein, L. S. B. J. Cell Biol. 105, 2103–2110.

  23. Grzanna, R. in Techniques in Immunocytochemistry Vol. 1 (ed. Bullock, G. R. & Petrusz, P.) 183–204 (Academic, New York, 1982).

    Google Scholar 

  24. Watkins, S. C., Samuel, J. L., Marotte, F., Bertier-Savalle, B. & Rappaport, L. Circulation Res. 60, 327–336 (1987).

    Article  CAS  Google Scholar 

  25. Watkins, S. C., Hoffman, E. P., Slayter, H. S. & Kunkel, L. M. Nature 333, 863–866 (1988).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lidov, H., Byers, T., Watkins, S. et al. Localization of dystrophin to postsynaptic regions of central nervous system cortical neurons. Nature 348, 725–728 (1990). https://doi.org/10.1038/348725a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/348725a0

  • Springer Nature Limited

This article is cited by

Navigation