Skip to main content

Advertisement

Log in

The strength of mantle silicates at high pressures and room temperature: implications for the viscosity of the mantle

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE rheological properties of the upper mantle, important in convective and tectonic processes, have long been studied through low-pressure creep experiments on olivine1–5. In comparison, our understanding of deformation in the deep Earth is incomplete, because there are few experimental constraints on the rheology of the transition zone (400–670 km depth) and the lower mantle. Estimates of the viscosity at these depths have had to rely on geophysical models of, for example, post-glacial uplift, the geoid and changes in the Earth's rate of rotation6–13. Recently we developed techniques for measuring solid-state creep at mantle pressures14, and here we use these methods to make direct laboratory measurements of the strength of key mantle minerals. We study (Mg, Fe)2SiO4 olivine (representative of about 60% of the upper mantle), (Mg, Fe)2SiO4 γ-spinel (which constitutes a large fraction of the transition zone) and (Mg, Fe)SiO3 perovskite and perovskite + (Mg, Fe)O magnesiowiistite assemblages (which comprise most of the lower mantle), all at room temperature and pressures of up to 60 GPa. Our results suggest that the transition zone may form a layer of relatively high viscosity or strength between the upper and lower mantle. A simple Theological model shows that this behaviour may be compatible with current geophysical observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Raleigh, C. B. J. geophys. Res. 73, 5391–5406 (1968).

    Article  ADS  Google Scholar 

  2. Goetze, C. Phil. Trans. R. Soc. A288, 99–119 (1978).

    Article  ADS  CAS  Google Scholar 

  3. Evans, B. & Goetze, C. J. geophys. Res. 84, 5505–5524 (1979).

    Article  ADS  Google Scholar 

  4. Kohlstedt, D. L., Nichols, H. P. K. & Hornack, P. J. geophys. Res. 85, 3122–3130 (1980).

    Article  ADS  Google Scholar 

  5. Karato, S., Paterson, M. S. & FitzGerald, J. D. J. geophys. Res. 91, 8151–8176 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Haskell, N. A. Am. J. Sci. 33, 22–28 (1937).

    Article  ADS  Google Scholar 

  7. McConnell, R. K. J. geophys. Res. 73, 7089–7105 (1968).

    Article  ADS  Google Scholar 

  8. Cathles, L. M. The Viscosity of the Earth's Mantle (Princeton University Press, 1975).

    Google Scholar 

  9. Peltier, W. R. A. Rev. Earth planet. Sci. 9, 199–225 (1981).

    Article  ADS  Google Scholar 

  10. O'Connell, R. J. Geophys. J. R. astr. Soc. 23, 299–327 (1971).

    Article  ADS  Google Scholar 

  11. Yuen, D. A., Sabadini, R. C., Gasperini, P. & Boschi, E. J. geophys. Res. 91, 11420–11438 (1986).

    Article  ADS  Google Scholar 

  12. Peltier, W. R. Nature 304, 434–436 (1983).

    Article  ADS  Google Scholar 

  13. Hager, B. J. geophys. Res. 89, 6003–6013 (1984).

    Article  ADS  Google Scholar 

  14. Meade, C. & Jeanloz, R. J. geophys. Res. 93, 3261–3269 (1988).

    Article  ADS  CAS  Google Scholar 

  15. Jeanloz, R. et al. Science 197, 457–459 (1977).

    Article  ADS  CAS  Google Scholar 

  16. Heinz, D. L. & Jeanloz, R. J. geophys. Res. 92, 11437–11444 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Mao, H. K., Bell, P. M., Shaner, J. W. & Steinberg, J. J. appl. Phys. 49, 3276–3283 (1978).

    Article  ADS  CAS  Google Scholar 

  18. Meade, C. & Jeanloz, R. Phys. Rev. B42, 2532–2535 (1990).

    Article  ADS  CAS  Google Scholar 

  19. Jeanloz, R. & Thompson, A. B. Rev. Geophys. Space Phys. 21, 51–74 (1983).

    Article  ADS  CAS  Google Scholar 

  20. Knittle, E. & Jeanloz, R. Science 235, 669–670 (1987).

    Article  ADS  Google Scholar 

  21. Karato, S., Fujino, K. & Ito, E. Geophys. Res. Lett. 17, 13–16 (1990).

    Article  ADS  Google Scholar 

  22. Kirby, S. & Veyssière, P. Phil. Mag. A41, 129–136 (1980).

    Article  CAS  Google Scholar 

  23. Paterson, M. S. Experimental Rock Deformation (Springer, New York, 1978).

    Book  Google Scholar 

  24. Meade, C. & Jeanloz, E. Nature 339, 616–618 (1989).

    Article  ADS  CAS  Google Scholar 

  25. Sung, C. M., Goetze, C. & Mao, H. K. Rev. sci. Instrum. 48, 1386–1391 (1977).

    Article  ADS  CAS  Google Scholar 

  26. Kelly, A. & Tyson, W. R. in High Strength Materials (ed. Zackay, V. F.) 578–602 (Wiley, New York, 1965).

    Google Scholar 

  27. Srinivasan, M. & Stoebe, T. G. J. appl. Phys. 41, 3726–3730 (1970).

    Article  ADS  CAS  Google Scholar 

  28. Meade, C. & Jeanloz, R. Science 241, 1072–1074 (1988).

    Article  ADS  CAS  Google Scholar 

  29. Meade, C. & Jeanloz, R. J. geophys. Res. 93, 3270–3274 (1988).

    Article  ADS  CAS  Google Scholar 

  30. Ross, J. V. & Nielsen, K. C. Tectonophysics 44, 233–261 (1978).

    Article  ADS  Google Scholar 

  31. Brawer, S. Relaxation in Viscous Liquids and Glasses (American Ceramic Society, Columbus, 1985).

    Google Scholar 

  32. Angell, C. A., Cheeseman, P. & Tamaddon, S. Science 218, 885–887 (1982).

    Article  ADS  CAS  Google Scholar 

  33. Sammis, C. G., Smith, J. C., Schubert, G. & Yuen, D. A. J. geophys. Res. 82, 3747–3761 (1977).

    Article  ADS  CAS  Google Scholar 

  34. Madon, M. & Poirier, J. P. Science 207, 66–68 (1980).

    Article  ADS  CAS  Google Scholar 

  35. Douhkan, N., Duclos, R. & Escaig, B. J. Phys. 40, 381–387 (1979).

    Article  Google Scholar 

  36. Bretheau, T., Castaing, J., Rabier, J. & Veyssière, P. Adv. Phys. 28, 835–1014 (1979).

    Article  ADS  CAS  Google Scholar 

  37. Frost, H. J. & Ashby, M. F. Deformation Mechanisms Maps (Pergamon, Oxford, 1982).

    Google Scholar 

  38. Karato, S. Phys. Earth planet. Inter. 55, 234–240 (1989).

    Article  ADS  CAS  Google Scholar 

  39. Weidner, D. J., Sawamoto, H., Sasaki, S. & Kumazawa, M. J. geophys. Res. 89, 7852–7860 (1984).

    Article  ADS  CAS  Google Scholar 

  40. Ito, E. & Takahashi, E. Nature 328, 514–517 (1987).

    Article  ADS  CAS  Google Scholar 

  41. Smith, B. K. thesis. Univ. of California, Berkeley (1982).

  42. Nicolas, A. & Poirier, J. P. Crystalline Plasticity and Solid State Flow in Metamorphic Rocks (Wiley, London, 1976).

    Google Scholar 

  43. Weidner, D. J. Geophys. Res. Lett. 12, 417–420 (1985).

    Article  ADS  CAS  Google Scholar 

  44. Turcotte, D. L. & Schubert, G. Geodynamics (Wiley, New York, 1982).

    Google Scholar 

  45. Ricard, Y., Vigny, C. & Froidevaux, C. J. geophys. Res. 94, 13739–13754 (1989).

    Article  ADS  Google Scholar 

  46. Hong, H. J., Yuen, D. A. & Wu, J. Phys. Earth planet. Inter. (in the press).

  47. Mitrovica, J. X. & Peltier, W. R. J. geophys. Res. 94, 13651–13671 (1989).

    Article  ADS  Google Scholar 

  48. James, T. S. & Morgan, W. J. Geophys. Res. Lett. 17, 957–960 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meade, C., Jeanloz, R. The strength of mantle silicates at high pressures and room temperature: implications for the viscosity of the mantle. Nature 348, 533–535 (1990). https://doi.org/10.1038/348533a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/348533a0

  • Springer Nature Limited

This article is cited by

Navigation