Skip to main content
Log in

Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE natural fluorescence properties of sea water provide a means of elucidating the complex chemical composition and diverse sources of dissolved organic matter (DOM) in sea water1–6. The positions of excitation and emission maxima for a wide range of natural water samples show remarkable similarity7. High-sensitivity fluorescence spectroscopic studies8 have shown recently that emission maxima for marine and coastal waters differ by 20 nm when the excitation wavelength is 313 nm. Here we present evidence from three-dimensional excitation emission matrix (EEM) spectroscopy that at least three fluorophores are present in waters of the Black Sea. Distinct changes in the relative abundance of these fluorophores are observed as a function of depth. We suggest that three-dimensional fluorescence spectroscopy can be used to distinguish between different types and sources of DOM in natural waters. These findings may have important applications in the field of remote sensing of phytoplankton pigments. For example, a better understanding of the sources of DOM components will help in correcting9,10 remotely sensed data for the presence of gelbstoff (yellow-coloured DOM11, which plays an important part in radiation absorption by surface waters).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kalle, K. Dt. hydrogr. Z. 2, 117–124 (1949).

    Article  Google Scholar 

  2. Kalle, K. Oceanogr. mar. Biol. A. Rev. 4, 91–104 (1966).

    Google Scholar 

  3. Traganza, E. D. Bull. mar. Sci. 19, 897–904 (1969).

    CAS  Google Scholar 

  4. Duursma, E. K. in Optical Aspects of Oceanography (eds Jerlov, N. G. & Steemann Nielsen, E.) 237–256 (Academic, New York, 1974).

    Google Scholar 

  5. Berger, P., Laane, R. W. P. M., Ilahude, A. G., Ewald, M. & Courtot, P. Oceanologica Acta 7, 309–314 (1984).

    Google Scholar 

  6. Cabaniss, S. E. & Shuman, M. S. Mar. Chem. 21, 37–50 (1987).

    Article  CAS  Google Scholar 

  7. Zepp, R. G. & Schlotzhauer, P. F. Chemosphere 10, 479–486 (1981).

    Article  ADS  Google Scholar 

  8. Donard, O. F. X., Lamotte, M., Belin, C. & Ewald, M. Mar. Chem. 27, 117–136 (1989).

    Article  CAS  Google Scholar 

  9. Bricaud, A., Morel, A. & Prieur, L. Limnol. Oceanogr. 26, 43–53 (1981).

    Article  ADS  CAS  Google Scholar 

  10. Carder, K. L., Steward, R. G., Harvey, G. R. & Ortner, P. B. Limnol. Oceanogr. 34, 68–81 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Kalle, K. Ann. Hydrogr. 66, 1–13 (1938).

    Google Scholar 

  12. Friederich, G. E., Codispoti, L. A. & Sakamoto, C. M. Tech. Rept. 90-3 (Monterey Bay Aquarium Research Institute, Monterey, 1990).

  13. Coble, P. G. thesis, MIT and Woods Hole Oceanogr. Inst. (1990).

  14. Coble, P. G., Gagosian, R. B., Codispoti, L. A., Friederich, G. E. & Christensen, J. P. Deep Sea Res. (in the press).

  15. Dunlap, W. C. & Susic, M. Mar. Chem. 17, 185–198 (1985).

    Article  CAS  Google Scholar 

  16. Green, S. G., Simpson, D. J., Zhou, G., Ho, P. S. & Blough, N. V. J. Am. chem. Soc. (in the press).

  17. Goyet, C., Bradshaw, A. L. & Brewer, P. G. Deep Sea Res. (in the press).

  18. Wolfbeis, O. S. in Molecular Luminescence Spectroscopy Part 1 (ed. Schulman, S. G.) 167–370 (Wiley-Interscience, New York, 1985).

    Google Scholar 

  19. Kramer, C. J. M. Neth. J. Sea Res. 13, 325–329 (1979).

    Article  Google Scholar 

  20. Hayase, K., Tsubota, J. & Sunada, I. Mar. Chem. 25, 373–381 (1988).

    Article  CAS  Google Scholar 

  21. Chen, R. F. & Bada, J. L. Geophys. Res. Lett. 16, 687–690 (1989).

    Article  ADS  CAS  Google Scholar 

  22. Kouassi, M. thesis, Univ. Miami (1986).

  23. Ewald, M., Stabel, H. & Belin, C. C. r. hebd. Séanc. Acad. Sci. Paris 302, 883–886 (1986).

    Google Scholar 

  24. Goldberg, M. C. & Weiner, E. R. in Humic substances in the Suwannee River, Georgia, US geol. Surv. Open-file Rep. 87-557, 179–204 (US Dept Interior, Washington, DC, 1989).

    Google Scholar 

  25. Lochmuller, C. H. & Saavedra, S. S. Analyt. Chem. 58, 1978–1981 (1986).

    Article  Google Scholar 

  26. Yentsch, C. S. & Reichert, C. A. Bot. Marina 3, 65–74 (1961).

    Google Scholar 

  27. Sieburth, J. M. & Jensen, A. J. exp. mar. Biol. Ecol. 3, 275–289 (1969).

    Article  CAS  Google Scholar 

  28. Carlson, D. J. & Mayer, L. M. Can. J. Fish. aquat. Sci. 40, 1258–1263 (1983).

    Article  Google Scholar 

  29. Hedges, J. I. Geochim. cosmochim. Acta 42, 69–76 (1978).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coble, P., Green, S., Blough, N. et al. Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy. Nature 348, 432–435 (1990). https://doi.org/10.1038/348432a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/348432a0

  • Springer Nature Limited

This article is cited by

Navigation