Skip to main content

Advertisement

Log in

Modulation of glycine receptor chloride channels by cAMP-dependent protein kinase in spinal trigeminal neurons

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

GLYCINE is an important inhibitory transmitter in the brainstem and spinal cord1,2. In the trigeminal subnucleus caudalis (medullary dorsal horn) and in the spinal dorsal horn (the relaying centres for processing pain and sensory information3–5), glycine inhibits the glutamate-evoked depolarization and depresses firing of neurons6. The binding of glycine to its receptor produces a large increase in Cl conductance, which causes membrane hyper-polarization7. The selectivity and gating properties of glycine receptor channels have been well characterized8; the glycine receptor molecules have also been purified9–11. The amino-acid sequence, deduced from complementary DNA clones encoding one of the peptides (the 48K subunit)12, shows significant homology with γ-aminobutyric acid A (GABAA) and nicotinic acetylcholine receptor subunits, suggesting that glycine receptors may belong to a superfamily of chemically gated channel proteins12,13. However, very little is known about the modulation of glycine receptor channels. We have investigated the regulation of strychnine-sensitive glycine receptor channels by cyclic AMP-dependent protein kinase in neurons isolated from spinal trigeminal nucleus of rat and report here that the protein kinase A dramatically increased the glycine-induced Cl currents by increasing the probability of the channel openings. GS protein, which is sensitive to cholera toxin, was involved in the modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Curtis, D. R., Hosli, L. & Johnston, G. A. R. Nature 215, 1502–1503 (1967).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Curtis, D. R., Duggan, A. W. & Johnston, G. A. R. Brain Res. 14, 759–762 (1967).

    Article  Google Scholar 

  3. Sessle, B. J., Hu, J. W., Dubner, R. & Lucier, G. E. J. Neurophysiol. 45, 193–207 (1981).

    Article  CAS  PubMed  Google Scholar 

  4. Dubner, R. & Bennett, G. J. A. Rev. Neurosci. 6, 381–418 (1983).

    Article  CAS  Google Scholar 

  5. Hu, J. W. & Sessle, B. J. J. Neurophysiol. 52, 39–53 (1984).

    Article  CAS  PubMed  Google Scholar 

  6. Willcockson, W. S., Chung, J. M., Hori, Y., Lee, K. H. & Willis, W. D. J. Neurosci. 4, 732–740 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Barker, J. L. & Nicoll, R. A. J. Physiol., Lond. 228, 259–277 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bormann, J., Hamill, O. P. & Sakmann, B. J. Physiol., Lond. 385, 243–286 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pfeiffer, F., Graham, D. & Betz, H. J. biol. Chem. 257, 9389–9393 (1982).

    CAS  PubMed  Google Scholar 

  10. Graham, D., Pfeiffer, F. & Betz, H. Biol. Chem. 24, 990–994 (1985).

    CAS  Google Scholar 

  11. Betz, H. & Becker, C.-M. Neurochem. Int. 13, 137–146 (1988).

    Article  CAS  PubMed  Google Scholar 

  12. Grenningloh, G. et al. Nature 328, 215–220 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Grenningloh, G. et al. Nature 330, 25–26 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Stelzer, A., Kay, A. R. & Wong, R. S. Science 241, 339–341 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Basbaum, A. I. & Fields, H. L. A. Rev. Neurosci. 7, 309–338 (1984).

    Article  CAS  Google Scholar 

  16. Westlund, K. N. & Coulter, J. D. Brain Res. Rev. 2, 235–264 (1980).

    Article  CAS  Google Scholar 

  17. Yash, T. L. & Reddy, S. V. R. Anesthesiology 54, 451–467 (1981).

    Article  Google Scholar 

  18. Yezierski, R. P., Wilcox, T. K. & Willis, W. D. J. Pharmac. exp. Ther. 220, 266–277 (1982).

    CAS  Google Scholar 

  19. Westlund, K. N., Bowker, R. W., Ziegler, M. G. & Coulter, J. D. Brain Res. 292, 1–16 (1984).

    Article  CAS  PubMed  Google Scholar 

  20. Duggan, A. W. Phil. Trans R. Soc. B 308, 375–391 (1985).

    Article  CAS  Google Scholar 

  21. Fleetwood-Walker, S., Mitchell, R., Hope, P., Molony, V. & Iggo, A. Brain Res. 334, 243–254 (1985).

    Article  CAS  PubMed  Google Scholar 

  22. McGeer, P. L., Eccles, J. C. & McGeer, E. G. in Molecular Neurobiology of the Mammalian Brain 149–173 (Plenum, New York, 1987).

    Book  Google Scholar 

  23. Huang, L.-Y. M. J. Physiol., Lond. 411, 161–177 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hamill, O., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflugers Arch. ges Physiol. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  25. O'Dell, T. J. & Christensen, B. N. J. Neurophysiol. 61, 162–172 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. Kurachi, Y., Nakajama, T. & Sugimoto, T. Pflugers Arch. ges. Physiol. 407, 264–274 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Y., Huang, LY. Modulation of glycine receptor chloride channels by cAMP-dependent protein kinase in spinal trigeminal neurons. Nature 348, 242–245 (1990). https://doi.org/10.1038/348242a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/348242a0

  • Springer Nature Limited

This article is cited by

Navigation