Skip to main content

Advertisement

Log in

X-ray structure of phospholipase A2 complexed with a substrate-derived inhibitor

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

PHOSPHOLIPASES A2 play a part in a number of physiologically important cellular processes such as inflammation, blood platelet aggregation and acute hypersensitivity1,2. These processes are all initiated by the release of arachidonic acid from cell membranes which is catalysed by intracellular phospholipases A2 and followed by conversion of arachidonic acid to prostaglandins, leukotrienes or thromboxanes3. An imbalance in the production of these com-pounds can lead to chronic inflammatory diseases such as rheumatoid arthritis and asthma. Inhibitors of phospholipase A2 might therefore act to reduce the effects of inflammation, so structural information about the binding of phospholipase A2 to its substrates could be helpful in the design of therapeutic drugs. The three-dimensional structure is not known for any intracellular phospholipase A2, but these enzymes share significant sequence homology4–6 with secreted phospholipases, for which some of the structures have been determined7–10. Here we report the structure of a complex between an extracellular phospholipase A2 and a competitively inhibiting substrate analogue, which reveals considerable detail about the interaction and suggests a mechanism for catalysis by this enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hirata, F. & Axelrod, J. Science 209, 1082–1090 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Vadas, P. & Pruzanski, W. Lab. Invest. 4, 391–404 (1986).

    Google Scholar 

  3. Flower, R. Tr. pharmacol. Sci. 2, 186–188 (1981).

    Article  CAS  Google Scholar 

  4. Seilhamer, J. J. et al. J. biol. Chem. 264, 5335–5338 (1989).

    CAS  PubMed  Google Scholar 

  5. Kramer, R. M. et al. J. biol. Chem. 264, 5768–5775 (1989).

    CAS  PubMed  Google Scholar 

  6. Mizushima, H. et al. J. Biochem. 105, 520–525 (1989).

    Article  CAS  Google Scholar 

  7. Dijkstra, B. W., Kalk, K. H., Hol, W. G. J. & Drenth, J. J. molec. Biol. 147, 93–123 (1981).

    Article  Google Scholar 

  8. Dijkstra, B. W., Renetseder, R., Kalk, K. H., Hol, W. G. J. & Drenth, J. J. molec. Biol. 168, 163–179 (1983).

    Article  CAS  Google Scholar 

  9. Brunie, S., Bolin, J., Gewirth, P. & Sigler, P. B. J. biol. Chem. 260, 9742–9747 (1985).

    CAS  PubMed  Google Scholar 

  10. Renetseder, R., Brunie, S., Dijkstra, B. W., Drenth, J. & Sigler, P. B. J. biol. Chem. 260, 11627–11634 (1985).

    CAS  PubMed  Google Scholar 

  11. de Haas, G. H., Dijkman, R., van Oort, M. G. & Verger, R. Biochim. biophys. Acta 1043, 75–82 (1990).

    Article  CAS  Google Scholar 

  12. Kuipers, O. P. et al. Science 244, 82–85 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Kuipers, O. P., Dijkman, R., Pals, C. E. G. M., Verheij, H. M. & de Haas, G. H. Protein Engng 2, 467–471 (1989).

    Article  CAS  Google Scholar 

  14. Hitchcock, P. B., Mason, R., Thomas, K. M. & Shipley, G. G. Proc. natn. Acad. Sci. U.S.A. 71, 3036–3040 (1974).

    Article  ADS  CAS  Google Scholar 

  15. Seelig, J. & Browning, J. L. FEBS Lett. 92, 41–44 (1978).

    Article  CAS  Google Scholar 

  16. Dijkstra, B. W., Kalk, K. H. & Drenth, J. Nature 289, 604–606 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Verheij, H. M. et al. Biochemistry 19, 743–750 (1980).

    Article  CAS  Google Scholar 

  18. Volwerk, J. J., Dedieu, A. G. R., Verheij, H. M., Dijkman, R. & de Haas, G. H. Reel. Trav. Chim. Pays-Bas 98, 214–220 (1979).

    Article  CAS  Google Scholar 

  19. Carter, P., Bedouelle, H. & Winter, G. Nucleic Acids Res. 13, 4431–4443 (1985).

    Article  CAS  Google Scholar 

  20. Kramer, W. et al. Nucleic Acids Res. 12, 9441–9456 (1984).

    Article  CAS  Google Scholar 

  21. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  22. Dijkman, R., Dekker, N. & de Haas, G. H. Biochim. biophys. Acta 1043, 67–74 (1990).

    Article  CAS  Google Scholar 

  23. Read, R. Acta crystallogr. Sect. A 42, 140–149 (1986).

    Article  Google Scholar 

  24. Crowther, R. A. in The Molecular Replacement Method (ed. Rossman, M. G.) 173–178 (Gordon & Breach, New York, 1972).

    Google Scholar 

  25. Crowther, R. A. & Blow, D. M. Acta crystallogr. 23, 544–548 (1967).

    Article  CAS  Google Scholar 

  26. Tronrud, D. E., Ten Eyck, L. F. & Matthews, B. W. Acta crystallogr. Sect. A 43, 489–501 (1987).

    Article  Google Scholar 

  27. Jones, T. A. Meth. Enzym. 115, 157–171 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thunnissen, M., AB, E., Kalk , K. et al. X-ray structure of phospholipase A2 complexed with a substrate-derived inhibitor. Nature 347, 689–691 (1990). https://doi.org/10.1038/347689a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/347689a0

  • Springer Nature Limited

This article is cited by

Navigation