Skip to main content
Log in

Phylogenetic and genetic evidence for base-triples in the catalytic domain of group I introns

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

UNDERSTANDING the mechanisms by which ribozymes catalyse chemical reactions requires a detailed knowledge of their structure. The secondary structure of the group I introns has been confirmed by comparison of over 70 published sequences1–4, by chemical protection studies5, and by genetic experiments involving compensatory mutations2,6,7. Phylogenetic data can also be used to identify tertiary interactions in RNA molecules. This was first done by Levitt8, who predicted tertiary interactions in transfer RNA, which were subsequently confirmed by X-ray crystallography9. More recently, sequence comparison data have been used to predict tertiary interactions in ribosomal RNA10. We have searched a complete alignment of the core regions of group I introns1,2 for evolutionary covariations that could not be ascribed to classical Watson–Crick or wobble base pairings. Here we describe two examples of phylogenetic covariation that are most simply explained by postulating hydrogen-bonded base-triples similar to those found in tRNA. Genetic experiments with the Tetrahymena and sunY introns confirm the importance of these interactions for the structure of the ribozyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cech, T. R. Gene 73, 259–271 (1988).

    Article  CAS  Google Scholar 

  2. Couture, S. et al. J. molec. Biol. in the press.

  3. Michel, F., Jacquier, A. & Dujon, B. Biochimie 64, 867–881 (1982).

    Article  CAS  Google Scholar 

  4. Davies, R. W., Waring, R. B., Ray, J. A., Brown, T. A. & Scazzocchio, C. Nature 300, 719–724 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Inoue, T. & Cech, T. R. Proc. natn. Acad. Sci. U.S.A. 82, 648–652 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Williamson, C. L., Tierney, W. M., Kerker, J. & Burke, J. M. J. biol. Chem. 262, 14672–14682 (1987).

    Article  CAS  Google Scholar 

  7. Flor, P. J., Flanegan, J. B. & Cech, T. R. EMBO J. 8, 3391–3399 (1989).

    Article  CAS  Google Scholar 

  8. Levitt, M. Nature 224, 759–763 (1969).

    Article  ADS  CAS  Google Scholar 

  9. Klug, A., Ladner, J. & Robertus, J. D. J. molec. Biol. 89, 511–516 (1974).

    Article  CAS  Google Scholar 

  10. Woese, C. R. & Gutell, R. R. Proc. natn. Acad. Sci. U.S.A. 87, 663–667 (1990).

    Article  ADS  Google Scholar 

  11. Shub, D. A. et al. Proc. natn. Acad. Sci. U.S.A. 85, 1151–1155 (1988).

    Article  ADS  CAS  Google Scholar 

  12. Doudna, J. A., Gerber, A. S., Cherry, J. M. & Szostak, J. W. in Cold Spring Harbor Symp. quant. Biol. 52, 173–180 (1987).

    Article  CAS  Google Scholar 

  13. Burke, J. M. et al. Nucleic Acids Res. 15, 7217–7221 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Kunkel, T. A. Proc. natn. Acad. Sci. U.S.A. 82, 488–492 (1985).

    Article  ADS  CAS  Google Scholar 

  15. Michel, F., Netter, P., Xu, M.-Q. & Shub, D. Genes Dev. 4, 777–788 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michel, F., Ellington, A., Couture, S. et al. Phylogenetic and genetic evidence for base-triples in the catalytic domain of group I introns. Nature 347, 578–580 (1990). https://doi.org/10.1038/347578a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/347578a0

  • Springer Nature Limited

This article is cited by

Navigation