Skip to main content

Advertisement

Log in

Formation of amyloid-like fibrils in COS cells overexpressing part of the Alzheimer amyloid protein precursor

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

A PATHOLOGICAL hallmark of Alzheimer's disease is the deposition of amyloid fibrils in the brain. The principal component of the amyloid fibril is β/A4 protein1,2, which is derived from a large membrane-bound glycoprotein, Alzheimer amyloid protein precursor (APP)3. Although the deposition of amyloid is thought to result from the aberrant processing of APP, the detailed molecular mechanisms of amyloidogenesis remain unclear. A C-terminal fragment of APP which spans the β/A4 and cytoplasmic domains has a tendency to self-aggregate4,5. In an attempt to establish a cultured-cell model for amyloid fibril formation, we have trans-fected COS-1 cells with complementary DNA encoding the C-terminal 100 residues of APP. In the perinuclear regions of a small population of DNA-transfected cells, we observed inclusion-like deposits which showed a strong immunohistochemical reaction towards an anti-C-terminal APP antibody or an anti-β/A4 amyloid core-specific antibody. Electron microscope observations of the inclusion-carrying cells revealed an accumulation of amyloid-like fibrils of 8–22 nm diameter near and on the nuclear membrane. The fibrils showed a beaded or helical structure, and reacted positively with the anti-C-terminus antibody by immunoelectron microscopy. These results suggest that the formation of amyloid fibrils is an inherent characteristic of the C-terminal peptide of APP. The present system provides a suitable model for the molecular dissection of the process of brain amyloidogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Glenner, G. G. & Wong, C. W. Biochem. biophys. Res. Commun. 122, 1131–1135 (1984).

    Article  CAS  Google Scholar 

  2. Masters, C. L. et al. Proc. natn. Acad. Sci. U.S.A. 82, 4245–4249 (1985).

    Article  ADS  CAS  Google Scholar 

  3. Kang, J. et al. Nature 325, 733–736 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Dyrks, T. et al. EMBO J. 7, 949–957 (1988).

    Article  CAS  Google Scholar 

  5. Wolf, D. et al. EMBO J. 9, 2079–2084 (1990).

    Article  CAS  Google Scholar 

  6. Yoshikawa, K., Williams, C. & Sabol, S. L. J. biol. Chem. 259, 14301–14308 (1984).

    Article  CAS  Google Scholar 

  7. Wong, G. G. et al. Science 228, 810–815 (1985).

    Article  ADS  CAS  Google Scholar 

  8. Ishii, T., Kametani, F., Haga, S. & Sato, M. Neuropath. appl. Neurobiol. 15, 135–147 (1989).

    Article  CAS  Google Scholar 

  9. Kidd, M. Brain 87, 307–320 (1964).

    Article  CAS  Google Scholar 

  10. Terry, R. D., Gonatas, N. K. & Weiss, M. Am. J. Pathol. 44, 269–283 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Merz, P. A. et al. Acta neuropathol. 60, 113–124 (1983).

    Article  CAS  Google Scholar 

  12. Miyakawa, T., Katsuragi, S., Watanabe, K., Shimoji, A. & Ikeuchi, Y. Acta neuropathol. 70, 202–208 (1986).

    Article  CAS  Google Scholar 

  13. Miyakawa, T., Watanabe, K. & Katsuragi, S. Virchows Arch. 52, 99–106 (1986).

    Article  CAS  Google Scholar 

  14. Kirschner, D. A. et al. Proc. natn. Acad. Sci. U.S.A. 84, 6953–6957 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Sisodia, S. S., Koo, E. H., Beyreuther, K., Unterbeck, A. & Price, D. L. Science 248, 492–495 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Esch, F. S. et al. Science 248, 1122–1124 (1990).

    Article  ADS  CAS  Google Scholar 

  17. Yankner, B. A. et al. Science 245, 417–429 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Selkoe, D. J. et al. Proc. natn. Acad. Sci. U.S.A. 85, 7341–7345 (1988).

    Article  ADS  CAS  Google Scholar 

  19. Weidemann, A. et al. Cell 57, 115–126 (1989).

    Article  CAS  Google Scholar 

  20. Saitoh, T. et al. Cell 58, 615–622 (1989).

    Article  CAS  Google Scholar 

  21. Marotta, C. A. et al. Proc. natn. Acad. Sci. U.S.A. 86, 337–341 (1989).

    Article  ADS  CAS  Google Scholar 

  22. Robakis, N. K., Ramakrishna, N., Wolfe, G. & Wisniewski, H. M. Proc. natn. Acad. Sci. U.S.A. 84, 4190–4194 (1987).

    Article  ADS  CAS  Google Scholar 

  23. Kunkel, T. A. Proc. natn. Acad. Sci. U.S.A. 82, 488–492 (1988).

    Article  ADS  Google Scholar 

  24. Brandl, C. J., deLeon, S., Martin, D. R. & MacLennan, D. H. J. biol. Chem. 262, 3768–3774 (1987).

    Article  CAS  Google Scholar 

  25. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  26. Sompayrac, L. M. & Danna, K. J. Proc. natn. Acad. Sci. U.S.A. 78, 7575–7578 (1981).

    Article  ADS  CAS  Google Scholar 

  27. Maruyama, K. & MacLennan, D. H. Proc. natn. Acad. Sci. U.S.A. 85, 3314–3318 (1988).

    Article  ADS  CAS  Google Scholar 

  28. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  29. Springer, T. A. J. biol. Chem. 256, 3833–3839 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maruyama, K., Terakado, K., Usami, M. et al. Formation of amyloid-like fibrils in COS cells overexpressing part of the Alzheimer amyloid protein precursor. Nature 347, 566–569 (1990). https://doi.org/10.1038/347566a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/347566a0

  • Springer Nature Limited

This article is cited by

Navigation