Skip to main content
Log in

Tunnelling evidence for predominantly electron–phonon coupling in superconducting Ba1−xKxBiO3 and Nd2−xCexCuO4−y

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

AMONG the superconducting oxides, the cubic, copper-free Ba1−xKxBiO3 (BKBO) and the electron-doped compound Nd2−xCexCuO4−y, (NCCO) stand out as being somewhat different from the rest. Nevertheless, an understanding of the pairing mechanism in BKBO (transition temperature, Tc ≈ 30K) and NCCO (Tc ≈ 23 K) may give important insights into the mechanisms of the higher- Tc superconductors. Here we report tunnelling spectroscopy measurements on BKBO and NCCO, using point-contact junctions that exhibit low leakage currents and sharp conductance peaks at the gap voltages V = ±Δ/e. Reasonably symmetric and reproducible structures are observed in the high-bias tunnelling conductances which are characteristic of phonon effects as seen in conventional superconductors. We have inverted the tunnelling data and obtained the Eliashberg functions, α2F(ω), where F(ω) is the phonon density of states at energy . For BKBO, α2F(ω) bears a close resemblance to the available phonon density of state determined by inelastic neutron scattering, most importantly consistently reproducing the minima. The fact that the α2F(ω) are not identical for different junctions leads to some uncertainty, but the calculated values of Tc are in good agreement with experiment for both BKBO and NCCO. Also, there is a good match between the calculated values of the total electron–phonon coupling constant λ and the measured 2Δ/κTc, consistent with predominantly phonon-mediated pairing mechanisms in these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wolf, E. L. Principles of Electron Tunneling Spectroscopy Chs 2–5 (Oxford University Press, New York, 1985).

    Google Scholar 

  2. Wolf, E. L., Zasadzinski, J., Osmun, J. W. & Arnold, G. B. J. low Temp. Phys. 40, 19–50 (1980).

    Article  ADS  CAS  Google Scholar 

  3. McMillan, W. L. & Rowell, J. M. in Superconductivity (ed. Parks, R. D.) Ch. 11 (Dekker, New York, 1969).

    Google Scholar 

  4. Zasadzinski, J. F. et al. Physica C158, 519–524 (1989).

    Article  CAS  Google Scholar 

  5. Peng, J. L., Shelton, R. N. & Radousky, H. B. Solid St. Commun. 71, 479–483 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Hinks, D. G., Mitchell, A. W., Zheng, Y., Richards, D. R. & Dabrowski, B. Appl. Phys. Lett. 54, 1585–1587 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Huang, Q., Zasadzinski, J. F., Gray, K. E., Liu, J. Z. & Claus, H. Phys. Rev. B40, 9366–9369 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Huang, Q., Zasadzinski, J. F., Gray, K. E., Bukowski, E. D. & Ginsberg, D. M. Physica C161, 141–144 (1989).

    Article  CAS  Google Scholar 

  9. Huang, Q., Zasadzinski, J. F. & Gray, K. E. Phys. Rev. (in the press).

  10. Ekino, T. & Akimitsu, J. Phys. Rev. B40, 7364–7367 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Wang, S. H. et al. Phys. Rev. Lett. 64, 1067–1070 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Schlesinger, Z. et al. Phys. Rev. B40, 6862–6866 (1989).

    Article  CAS  Google Scholar 

  13. Wolf, E. L. et al. Phys. Rev. B22, 1214–1217 (1980).

    Article  CAS  Google Scholar 

  14. Loong, C. K. et al. Phys. Rev. Lett. 62, 2628–2631 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Wolf, E. L., Chen, T. P. & Burneli, D. M. Phys Rev. B31, 6096–6098 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Q., Zasadzinski, J., Tralshawala, N. et al. Tunnelling evidence for predominantly electron–phonon coupling in superconducting Ba1−xKxBiO3 and Nd2−xCexCuO4−y. Nature 347, 369–372 (1990). https://doi.org/10.1038/347369a0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/347369a0

  • Springer Nature Limited

This article is cited by

Navigation