Skip to main content
Log in

Microconversion between murine H-2 genes integrated into yeast

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

PATCHWORK homology observed between divergent members of polymorphic multigene families is thought to reflect evolution by short-tract gene conversion (nonreciprocal recombination), although this mechanism cannot usually be confirmed in higher organisms1–12. In contrast to meiotic conversions observed in laboratory yeast strains, apparent conversions between polymor-phic sequences, such as the class I loci of the major histocompatibil-ity complex (MHC), are short and do not seem to be associated with reciprocal recombination (crossover, exchanges)7–9,13–23. We have now integrated two nonallelic murine class I genes into yeast to characterize their meiotic recombination. We found no cross-overs between the MHC genes, but short-tract 'microconversions' of 1–215 base-pairs were observed in about 6% of all meioses. Strikingly, one of these events was accompanied by a single base-pair mutation. These results underscore both the importance of meiotic gene conversion and sequence heterology in determining conversion patterns between divergent genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nicholls, R. D., Higgs, D. R., Clegg, J. B. & Weatherall D. J. Blood 65, 1434–1438 (1985).

    CAS  PubMed  Google Scholar 

  2. Powers, P. A. & Smithies, O. Genetics 112, 343–358 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Reynaud, C.-A., Dahan, A., Anquez, A. & Weill, J.-C. Cell 59, 171–183 (1989).

    Article  CAS  Google Scholar 

  4. Atchison, M. & Adesnick, M. Proc. nant. Acad. Sci. U.S.A. 83, 2300–2304 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Eikbush, T. H. & Burke, W. D. Proc. natn. Acad. Sci. U.S.A. 82, 2814–2818 (1985).

    Article  ADS  Google Scholar 

  6. Harada, F. et al. Proc. natn. Acad. Sci. U.S.A. 84, 8091–8094 (1987).

    Article  ADS  CAS  Google Scholar 

  7. Pease, L. R., Schulze, D. H., Pfaffenbach, G. M. & Nathenson, S. G. Proc. natn. Acad. Sci. U.S.A. 80, 242–246 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Nathenson, S. G., Geliebter, J., Pfaffenbach, G. M. & Zeff, R. A. A. Rev. Immunol. 4, 474–502 (1986).

    Google Scholar 

  9. Geleibter, J. & Nathenson, S. G. Molec. cell. Biol. 8, 4342–4352 (1988).

    Article  Google Scholar 

  10. Ernst, J. F., Stewart, J. W. & Sherman, F. Proc. natn. Acad. Sci. U.S.A. 78, 6334–6338 (1984).

    Article  ADS  Google Scholar 

  11. Hampsey, D. M., Ernst, J. F., Stewart, J. W. & Sherman, F. J. molec. Biol. 201, 471–486 (1988).

    Article  CAS  Google Scholar 

  12. Munz, P., Amstutz, H., Kohli, J. & Leopold, U. Nature 300, 225–231 (1982).

    Article  ADS  CAS  Google Scholar 

  13. Hood, L., Steinmetz, M. & Malissen, B. A. Rev. Immunol. 1, 529–568 (1983).

    Article  CAS  Google Scholar 

  14. Jaulin, C. et al. Immunogenetics 22, 453–470 (1985).

    Article  CAS  Google Scholar 

  15. Klein, J. Natural History of the Histocompatibility Complex (J. Wiley, New York, 1986).

    Google Scholar 

  16. Steinmetz, M., Stephan, D. & Lindahl, K. F. Cell 44, 895–904 (1986).

    Article  CAS  Google Scholar 

  17. Hughes, A. L. & Nei, M. Nature 335, 167–170 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Parham, P. et al. Proc. natn. Acad. Sci. U.S.A. 85, 4005–4009 (1988).

    Article  ADS  CAS  Google Scholar 

  19. Vogel, J. M. et al. J. exp. Med. 165, 1781–1800 (1988).

    Article  Google Scholar 

  20. Judd, S. R. & Petes, T. D. Genetics 118, 401–410 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Borts, R. H. & Haber, J. E. Genetics 123, 69–80 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Fogel, S., Choi, T., Kilgore, D., Lusnak, K. & Williamson, M. in Recent Advances in Yeast Molecular Biology: Recombinant DNA, 269–288 (Lawrence-Berkeley Laboratory, Berkeley, California, 1982).

    Google Scholar 

  23. Fogel, S., Mortimer, R. K. & Lusnak, K. in Yeast Genetics: Fundamental and Applied Aspects (eds Spencer, J. F. T., Spencer, D. M. & Smith, A. R. W.) 65–107 (Springer-Verlag, New York, 1983).

    Book  Google Scholar 

  24. Dunnick, W., Wilson, M. & Stavnezer, J. Molec. cell. Biol. 9, 1850–1856 (1989).

    Article  CAS  Google Scholar 

  25. Carpenter, A. T. C. Cold Spring Harb. Symp. quant. Biol. 49, 23–29 (1984).

    Article  CAS  Google Scholar 

  26. Ahn, B.-Y. & Livingston, D. M. Molec. cell. Biol. 6, 3685–3693 (1986).

    Article  CAS  Google Scholar 

  27. Abastado, J.-P., Cami, B., Dinh, T. H., Igolen, J. & Kourilsky, P. proc. natn. Acad. Sci. U.S.A. 81, 5792–5796 (1984).

    Article  ADS  CAS  Google Scholar 

  28. Kuhner, M. & Goodenow, R. S. Immunogenetics 30, 458–464 (1989).

    Article  CAS  Google Scholar 

  29. Watts, S. et al. J. Immun. 139, 3878–3885 (1987).

    CAS  PubMed  Google Scholar 

  30. Rothstein, R. in DNA Cloning: A Practical Approach Vol. 2 (ed. Glouer, D. M.) 52–58 (IRL, Oxford, 1985).

    Google Scholar 

  31. Hanahan, D. J. molec. Biol. 166, 557–580 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wheeler, C., Maloney, D., Fogel, S. et al. Microconversion between murine H-2 genes integrated into yeast. Nature 347, 192–194 (1990). https://doi.org/10.1038/347192a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/347192a0

  • Springer Nature Limited

This article is cited by

Navigation