Skip to main content
Log in

Differential denudation and flexural isostasy in formation of rifted-margin upwarps

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

MARGINAL upwarps are common features of rifted continental margins1,2, but tectonic models of the evolution of rifted margins have not adequately explained their form, or their persistence along some margins more than 100 Myr after continental rupture. Marginal upwarps not only significantly influence the geomorphological evolution of rifted margins and their adjacent continental interiors, but are also important in determining patterns of offshore sedimentation. Here we show that the contrast in denudation rates between the evolving coastal flanks of rifted margins and their interior hinterlands can promote significant marginal upwarps if the lithosphere responds flexurally to the resulting differential unloading2,3. Using data for the western margin of southern Africa, we demonstrate that upwarps of 600 m with respect to the adjacent continental interior can be generated by this process independently of the mechanics of rifting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oilier, C. D. (ed.) Z. Geomorph. Suppl. 54 (1985).

  2. Summerfield, M. A. in Tectonic Geomorphology (eds Morisawa, M. & Hack, J. T.) 27–51 (Allen & Unwin, Boston, 1985).

    Google Scholar 

  3. Thomas, M. F. & Summerfield, M. A. in Int. Geomorph. 1985, Proc. 1st Int. Conf. on Geomorphology (eds Gardiner, V. et al.) 935–956 (Wiley, Chichester, 1987).

    Google Scholar 

  4. Buck, W. R. Earth planet. Sci. Lett. 77, 362–372 (1986).

    Article  ADS  Google Scholar 

  5. Buck, W. R., Martinez, F., Steckler, M. S. & Cochran, J. R. Tectonics 7, 213–234 (1988).

    Article  ADS  Google Scholar 

  6. McKenzie, D. P. Nature 307, 616–618 (1984).

    Article  ADS  Google Scholar 

  7. Braun, J. & Beaumont, C. Geology 17, 760–764 (1989).

    Article  ADS  Google Scholar 

  8. Weissel, J. K. & Karner, G. D. J. geophys. Res. 94, 13919–13950 (1989).

    Article  ADS  Google Scholar 

  9. Royden, L. & Keen, C. E. Earth planet. Sci. Lett. 51, 343–361 (1980).

    Article  ADS  Google Scholar 

  10. White, N. & McKenzie, D. P. Geology 16, 250–253 (1988).

    Article  ADS  Google Scholar 

  11. White, R. S. & McKenzie, D. P. J. geophys. Res. 94, 7685–7729 (1989).

    Article  ADS  Google Scholar 

  12. Cox, K. G. Nature 342, 873–877 (1989).

    Article  ADS  Google Scholar 

  13. Bohannon, R. G., Naeser, C. W., Schmidt, D. L. & Zimmermann, R. A. J. geophys. Res. 94, 1683–1701 (1989).

    Article  ADS  Google Scholar 

  14. Rust, D. J. & Summerfield, M. A. Mar. Petrol Geol. (in the press).

  15. Brown, R. W., Rust, D. J., Summerfield, M. A., Gleadow, A. J. W. & De Wit, M. C. J. Nucl. Tracks (in the press).

  16. Moore, M. E., Gleadow, A. J. W. & Lovering, J. F. Earth planet. Sci. Lett. 78, 255–270 (1986).

    Article  ADS  Google Scholar 

  17. Oelofsen, B. W. Geophys. Monogr. 41, 131–138 (1987).

    Google Scholar 

  18. Ahnert, F. Am. J. Sci. 268, 243–263 (1970).

    Article  ADS  Google Scholar 

  19. Gerrard, I. & Smith, G. C. Am. Ass. Petrol. Geol. Mem. 34, 49–74 (1980).

    Google Scholar 

  20. Stephenson, R. Geophys. J. R. astr. Soc. 77, 385–413 (1984).

    Article  ADS  Google Scholar 

  21. Lambeck, K. & Stephenson, R. Aust. J. Earth Sci. 33, 253–270 (1986).

    Article  ADS  Google Scholar 

  22. Moretti, I. & Turcotte, D. L. J. Geodyn. 3, 155–168 (1985).

    Article  Google Scholar 

  23. Culling, W. E. H. J. Geol. 73, 230–254 (1965).

    Article  ADS  Google Scholar 

  24. Nadai, A. Theory of Flow and Fracture of Solids (McGraw-Hill, New York, 1963).

    Google Scholar 

  25. Karner, G. D. & Watts, A. B. J. geophys. Res. 87, 2923–2948 (1982).

    Article  ADS  Google Scholar 

  26. Ebinger, C. J., Bechtel, T. D., Forsyth, D. W. & Bowin, C. O. J. geophys. Res. 94, 2883–2901 (1989).

    Article  ADS  Google Scholar 

  27. Speight, J. G. in The Age of Landforms in Eastern Australia: Tech. Memo. 87/2, 61–65 (CSIRO Div. Water and Land Resources, Canberra, 1987).

  28. Summerfield, M. A. Area 13, 3–8 (1981).

    Google Scholar 

  29. Partidge, T. C. & Maud, R. R. S. Afr. J. Geol. 90, 179–208 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilchrist, A., Summerfield, M. Differential denudation and flexural isostasy in formation of rifted-margin upwarps. Nature 346, 739–742 (1990). https://doi.org/10.1038/346739a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/346739a0

  • Springer Nature Limited

This article is cited by

Navigation