Skip to main content
Log in

A morphogenetic gradient of hunchback protein organizes the expression of the gap genes Krüppel and knirps in the early Drosophila embryo

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

SEGMENTATION of the Drosophila embryo depends on a hierarchy of interactions among the maternal and zygotic genes in the early embryo (see refs 1–3 for reviews). The anterior region is organized maternally by the bicoid (bcd) gene product, which forms a concentration gradient in the anterior half of the embyro4–6. The gap genes are also involved in establishing the body plan, with hunchback (hb) being expressed both maternally and zygotically7,10. Zygotic expression of hb is directly activated by the bcd gene product, leading to a subdivision of the embryo into an anterior half expressing zygotically provided hb protein and a posterior half that does not. A similar effect on maternally provided hb protein is caused by the gene nanos, which represses the translation of maternally provided transcripts in the posterior half. This regulation of hb protein is a prerequisite for abdomen development, because the presence of hb protein in the posterior half represses posterior segmentation14,17,18. This repression mechanism suggests that posterior segmentation might not directly depend on maternal positional cues, but be solely organized at the zygotic level. Here we report further evidence to support this hypothesis and show that the hb protein itself is crucially involved in organizing abdominal segmentation. Differential concentrations of hb protein determine the anterior and posterior borders of expression of the gap gene Krüppel (Kr) and the anterior border of the gap gene knirps (kni), thus defining three positional values. These regulatory pathways are controlled in a redundant way, in part by bcd and in part by the maternal hb gene product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akam, M. Development 101, 1–22 (1987).

    Article  CAS  Google Scholar 

  2. Ingham, P. Nature 335, 25–34 (1988).

    Article  CAS  ADS  Google Scholar 

  3. Nüsslein-Volhard, C., Frohnhöfer, H. G. & Lehmann, R. Science 238, 1675–1681 (1987).

    Article  ADS  Google Scholar 

  4. Frohnhöfer, H. G. & Nüsslein-Volhard, C. Nature 324, 120–125 (1986).

    Article  ADS  Google Scholar 

  5. Driever, W. & Nüsslein-Volhard, C. Cell 54, 83–93 (1988).

    Article  CAS  Google Scholar 

  6. Driever, W. & Nüsslein-Volhard, C. Cell 54, 95–104 (1988).

    Article  CAS  Google Scholar 

  7. Tautz, D. Nature 332, 281–284 (1988).

    Article  CAS  ADS  Google Scholar 

  8. Jäckle, H., Tautz, D., Schuh, E., Seifert, E. & Lehmann, R. Nature 324, 668–670 (1986).

    Article  ADS  Google Scholar 

  9. Gaul, U. & Jäckle, H. Cell 51, 549–555 (1987).

    Article  CAS  Google Scholar 

  10. Lehmann, R. & Nüsslein-Volhard, C. Devl Biology 119, 402–417 (1987).

    Article  CAS  Google Scholar 

  11. Nüsslein-Volhard, C. Roux's Arch. dev. Biol. 183, 249–268 (1977).

    Article  Google Scholar 

  12. Wharton, R. P. & Struhl, G. Cell 59, 881–892 (1989).

    Article  CAS  Google Scholar 

  13. Lehmann, R. & Nüsslein-Volhard, C. Cell 47, 141–152 (1986).

    Article  CAS  Google Scholar 

  14. Struhl, G. Nature 338, 741–744 (1989).

    Article  CAS  ADS  Google Scholar 

  15. Pankratz, M., Hoch, M., Seifert, E. & Jäckle, H. Nature 341, 337–340 (1989).

    Article  CAS  ADS  Google Scholar 

  16. Lehmann, R. & Frohnhöfer, H. G. Development (Suppl.) 107, 21–29 (1989).

    Article  Google Scholar 

  17. Hülskamp, M., Schröder, C., Pfeifle, C., Jäckle, H. & Tautz, D. Nature 338, 629–632 (1989).

    Article  ADS  Google Scholar 

  18. Irish, V., Lehmann, R. & Akam, M. Nature 338, 646–648 (1989).

    Article  CAS  ADS  Google Scholar 

  19. Sander, K. Adv. Insect Physiol. 12, 125–238 (1976).

    Article  Google Scholar 

  20. Elkins, T., Zinn, K., McAllister, L., Hoffmann, F. M. & Goodman, C. S. Cell 60, 565–575 (1990).

    Article  CAS  Google Scholar 

  21. Tautz, D. & Pfeifle, C. Chromosoma 98, 81–85 (1989).

    Article  CAS  Google Scholar 

  22. Busson, D., Gans, M., Komitopoulou, K. & Masson, M. Genetics 105, 309–325 (1983).

    Article  CAS  Google Scholar 

  23. Nauber, U. et al. Nature 336, 489–492 (1988).

    Article  CAS  ADS  Google Scholar 

  24. Schröder, C., Tautz D., Seifert, E. & Jäckle, H. EMBO J. 7, 2881–2887 (1988).

    Article  Google Scholar 

  25. Driever, W. & Nüsslein-Volhard, C. Nature 337, 138–143 (1989).

    Article  CAS  ADS  Google Scholar 

  26. Struhl, G., Struhl, K. & Macdonald, P. Cell 57, 1259–1273 (1989).

    Article  CAS  Google Scholar 

  27. Struhl, G. Ciba Foundn Symp. 144 (eds Evered, D. & Marsh, J.) 65–86 (Wiley, Chichester, 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hülskamp , M., Pfeifle, C. & Tautz, D. A morphogenetic gradient of hunchback protein organizes the expression of the gap genes Krüppel and knirps in the early Drosophila embryo. Nature 346, 577–580 (1990). https://doi.org/10.1038/346577a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/346577a0

  • Springer Nature Limited

This article is cited by

Navigation