Skip to main content
Log in

Empty MHC class I molecules come out in the cold

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

MAJOR histocompatibility complex (MHC) class I molecules present antigen by transporting peptides from intracellularly degraded proteins to the cell surface for scrutiny by cytotoxic T cells. Recent work suggests that peptide binding may be required for efficient assembly and intracellular transport of MHC class I molecules1, but it is not clear whether class I molecules can ever assemble in the absence of peptide. We report here that culture of the murine lymphoma mutant cell line RMA-S at reduced temperature (19–33 °C) promotes assembly, and results in a high level of cell surface expression of H-2/β2-microglobulin complexes that do not present endogenous antigens, and are labile at 37 °C. They can be stabilized at 37 °C by exposure to specific peptides known to interact with H–2Kb or Db. Our findings suggest that, in the absence of peptides, class I molecules can assemble but are unstable at body temperature. The induction of such molecules at reduced temperature opens new ways to analyse the nature of MHC class I peptide interactions at the cell surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Townsend, A. et al. Nature 340, 443–448 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Ljunggren, H. G. & Kärre, K. J. exp. Med. 142, 1745–1759 (1985).

    Article  Google Scholar 

  3. Kärre, K., Ljunggren, H. G., Piontek, G. & Kiessling, R. Nature 319, 675–678 (1986).

    Article  ADS  PubMed  Google Scholar 

  4. Ōhlén, C. et al. J. Immun. (in the press).

  5. Ōhlén, C. et al. Eur. J. Immun. (in the press).

  6. Lippincott-Schwartz, J., Bonifacino, J. S., Yuan, L. C. & Klausner, R. D. Cell 54, 209–220 (1988).

    Article  CAS  PubMed  Google Scholar 

  7. Yewdell, J. W. & Bennink, J. R. Science 244, 1072–1075 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Nuchtern, J. G., Bonifacino, J. S., Biddison, W. E. & Klausner, R. D. Nature 339, 223–226 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Schumacher, T. N. M. et al. Cell (in the press).

  10. Townsend, A. R. M. et al. Cell (in the press).

  11. Lechler, R. I., Lombardi, G., Batchelor, J. R., Reinsmoen, N. & Bach, F. G. Immun. Today 11, 83–88 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Severinson, L., Martens, I. & Peterson, P. A. J. Immun. 137, 1003–1009 (1986).

    Google Scholar 

  13. Ljunggren, H. G. & Kärre, K. Immun. Today 11, 237–244 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Neefjes, J. J., Stollorz, V., Peters, P. J., Geuze, H. J. & Ploegh, H. L. Cell 61, 171–183 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Lögdberg, L., Ōstergren, P. O. & Peterson, P. A. Molec. Immun. 14, 577–587 (1979).

    Article  Google Scholar 

  16. Kvist, S., Östberg, L. & Peterson, P. A. Scand. J. Immun. 7, 265–276 (1978).

    Article  CAS  Google Scholar 

  17. Neefjes, J. J., Breur-Vriesendorp, B. S., van Seventer, G. A., Ivanyi, P. & Ploegh, H. L. Human Immun. 14, 149–181 (1986).

    Google Scholar 

  18. Philips, D. R. & Morrison, M. Biochem. biophys. Res. Commun. 40, 284–289 (1970).

    Article  Google Scholar 

  19. Ozato, K. & Sachs, D. H. J. Immun. 126, 317–321 (1981).

    CAS  PubMed  Google Scholar 

  20. Ozato, K., Hansen, T. H. & Sachs, D. H. J. Immun. 125, 2473–2477 (1980).

    CAS  PubMed  Google Scholar 

  21. Allen, H., Wraith, D., Pala, P., Askonas, B. & Flavell, R. A. Nature 309, 279–281 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Allen, H., Fraser, J., Flyer, D., Calvin, S. & Flavell, R. Proc. natn. Acad. Sci. U.S.A. 83, 7447–7451 (1986).

    Article  ADS  CAS  Google Scholar 

  23. Hämmerling, G. J., Hämmerling, U. & Lemke, H. Immunogenetics 8, 433–445 (1979).

    Article  Google Scholar 

  24. Townsend, A. R. M., Gotch, F. M. & Davey, J. Cell 42, 457–467 (1985).

    Article  CAS  PubMed  Google Scholar 

  25. Jones, B. & Janeway, C. A. Nature 292, 547–549 (1981).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Tada, N. et al. Immunogenetics 11, 441–444 (1980).

    Article  CAS  PubMed  Google Scholar 

  27. Chorney, M., Sehn, F. W., Michaelson, J. & Boyse, E. A. Immunogenetics 14, 91–93 (1982).

    Article  Google Scholar 

  28. Townsend, A. R. M. et al. J. exp. Med. 148, 1211–1224 (1988).

    Article  Google Scholar 

  29. Townsend, A. R. M. et al. Cell 44, 959–968 (1986).

    Article  CAS  PubMed  Google Scholar 

  30. Bodmer, H. C., Bastin, J. M., Askonas, B. A. & Townsend, A. R. M. Immunology 66, 143–149 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ljunggren, HG., Stam, N., Öhlén, C. et al. Empty MHC class I molecules come out in the cold. Nature 346, 476–480 (1990). https://doi.org/10.1038/346476a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/346476a0

  • Springer Nature Limited

This article is cited by

Navigation