Skip to main content
Log in

Hyperpolarization and relaxation of arterial smooth muscle caused by nitric oxide derived from the endothelium

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

STIMULATION of the endothelial lining of arteries with acetyl-choline results in the release of a diffusible substance that relaxes and hyperpolarizes the underlying smooth muscle1–9. Nitric oxide (NO) has been a candidate for this substance, termed endothelium-derived relaxing factor10,11. But there are several observations that argue against the involvement of NO in acetylcholine-induced hyperpolarization. First, exogenous NO has no effect on the membrane potential of canine mesenteric arteries7. Second, although haemoglobin (believed to bind and inactivate NO (refs 11–15)) and methylene blue (which prevents the stimulation of guanylate cyclase11–16) inhibit relaxation7,12–14, neither has an effect on hyperpolarization5,7,8. Finally, nitroprusside, thought to generate NO in vascular smooth muscle14,16, relaxes rat aorta without increasing rubidium efflux17. Nevertheless, nitrovasodilators, nitroprusside and nitroglycerine cause hyperpolarization in some arteries18–20. NO might therefore be responsible for at least part of the hyperpolarization induced by acetylcholine. We now report that hyperpolarization and relaxation evoked by acetylcholine are reduced by NG-monomethyl-L-arginine, an inhibitor of NO biosynthesis from L-arginine21–25. Thus NO derived from the endothelium can cause hyperpolarization of vascular smooth muscle, which might also contribute to relaxation by closing voltage-dependent calcium channels. Our findings raise the possibility that hyperpolarization might be a component of NO signal transduction in neurons or inflammatory cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Furchgott, R. F. & Zawadzki, J. V. Nature 288, 373–376 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Kuriyama, H. & Suzuki, H. Br. J. Pharmac. 64, 493–501 (1978).

    Article  CAS  Google Scholar 

  3. Bolton, T. B., Lang, R. J. & Takewaki, T. J. Physiol., Lond. 351, 549–572 (1984).

    Article  CAS  Google Scholar 

  4. Komori, K. & Suzuki, H. Br. J. Pharmac. 92, 657–664 (1987).

    Article  CAS  Google Scholar 

  5. Chen, G., Suzuki, H. & Weston, A. H. Br. J. Pharmac. 95, 1165–1174 (1988).

    Article  CAS  Google Scholar 

  6. Feletou, M. & Vanhoutte, P. M. Br. J. Pharmac. 93, 515–524 (1988).

    Article  CAS  Google Scholar 

  7. Komori, K., Lorenz, R. R. & Vanhoutte, P. M. Am. J. Physiol. 255, H207–212 (1988).

    CAS  PubMed  Google Scholar 

  8. Chen, G. & Suzuki, H. J. Physiol., Lond. 410, 91–106 (1989).

    Article  CAS  Google Scholar 

  9. Parkington, H. C. et al. Proc. Aust. Physiol. Pharmac. Soc. 20, 17P (1989).

    Google Scholar 

  10. Palmer, R. M. J., Ferrige, A. G. & Moncada, S. Nature 327, 524–526 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Ignarro, L. J., Buga, G. M., Wood, K. S., Byrns, R. E. & Chaudhuri, G. Proc. natn. Acad. Sci. U.S.A. 84, 9265–9269 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Dusting, G. J., Read, M. A. & Stewart, A. G. Clin. exp. Pharmac. Physiol. 15, 83–92 (1988).

    Article  CAS  Google Scholar 

  13. Martin, W., Villani, G. M., Jothianandan, D. & Furchgott, R. F. J. Pharmac. exp. Ther. 232, 708–716 (1985).

    CAS  Google Scholar 

  14. Ignarro, L. J. & Kadowitz, P. J. A. Rev. Pharmac. Tox. 25, 171–191 (1985).

    Article  CAS  Google Scholar 

  15. Feelisch, M. & Noack, E. A. Eur. J. Pharmac. 139, 19–30 (1987).

    Article  CAS  Google Scholar 

  16. Waldman, S. A. & Murad, F. Pharmac. Rev. 39, 163–196 (1987).

    CAS  Google Scholar 

  17. Taylor, S. G., Southerton, J. S., Weston, A. H. & Baker, J. R. J. Br. J. Pharmac. 94, 853–863 (1988).

    Article  CAS  Google Scholar 

  18. Itoh, Y., Suzuki, H. & Kuriyama, H. J. Pharmac. exp. Ther. 207, 1022–1031 (1978).

    Google Scholar 

  19. Cheung, D. W. & Mackay, M. J. Br. J. Pharmac. 86, 117–124 (1985).

    Article  CAS  Google Scholar 

  20. Itoh, Y., Kitamura, K. & Kuriyama, H. Br. J. Pharmac. 70, 197–204 (1980).

    Article  Google Scholar 

  21. Palmer, R. M. J., Ashton, D. S. & Moncada, S. Nature 333, 664–666 (1988).

    Article  ADS  CAS  Google Scholar 

  22. Palmer, R. M. J., Rees, D. D., Ashton, D. S. & Moncada, S. Biochem. biophys. Res. Commun. 153, 1251–1256 (1988).

    Article  CAS  Google Scholar 

  23. Sakuma, I., Stuehr, D. J., Gross, S. S., Nathan, C. & Levi, R. Proc. natn. Acad. Sci. U.S.A. 85, 8664–8667 (1988).

    Article  ADS  CAS  Google Scholar 

  24. Palmer, R. M. J. & Moncada, S. Biochem. biophys. Res. Commun. 158, 345–352 (1989).

    Article  Google Scholar 

  25. Rees, D. D., Palmer, R. M., Hodson, H. F. & Moncada, S. Br. J. Pharmac. 96, 418–424 (1989).

    Article  CAS  Google Scholar 

  26. Itoh, Y., Kitamura, H. & Kuriyama, H. J. Physiol., Lond. 309, 171–183 (1980).

    Article  Google Scholar 

  27. Beny, J. L. & Burnet, P. C. Blood Vessels 25, 308–311 (1988).

    CAS  PubMed  Google Scholar 

  28. Huang, A. H., Busse, R. & Bassenge, E. Naunyn-Schmeideberg, Archs Pharmac. 338, 438–442 (1988).

    CAS  Google Scholar 

  29. Mulvany, M. J. & Halpern, W. Circulation Res. 41, 19–26 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tare, M., Parkington, H., Coleman, H. et al. Hyperpolarization and relaxation of arterial smooth muscle caused by nitric oxide derived from the endothelium. Nature 346, 69–71 (1990). https://doi.org/10.1038/346069a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/346069a0

  • Springer Nature Limited

This article is cited by

Navigation