Skip to main content
Log in

Nucleation and growth of fibres and gel formation in sickle cell haemoglobin

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

DEOXYGENATED sickle haemoglobin polymerizes into long 210-Å diameter fibres that distort and decrease the deformability of red blood cells, and cause sickle cell disease. The fibres consist of seven intertwined double strands1–3. They can form birefringent nematic liquid crystals (tactoids)4 and spherulites5,6. Rheologiealiy, the system behaves as a gel7,8. The equilibria show a phase separation and a solubility9–14. The reaction kinetics show a delay time, are then roughly exponential and are highly dependent on concentration and temperature9,10,15–18, and accord with the double nucleation model5,19. But these conclusions are derived from macroscopic data, without direct observation of individual fibres. We have now used non-invasive video-enhanced differential interference contrast (DIC) and dark-field microscopy to observe nucleation, growth and interaction of sickle deoxyhaemoglobin fibres in real time. The fibres originate both from centres that produce many radially distributed fibres and on the surface of pre-existing fibres, from which they then branch. The resulting network is cross-linked and dynamic in that it is flexible and continues to grow and cross-link. Our results support most aspects of the double nucleation model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wishner, B. C., Ward, K. B., Lattman, E. E. & Love, W. E. J. molec. Biol. 98, 179–194 (1975).

    Article  CAS  Google Scholar 

  2. Dykes, G. W., Crepeau, R. H. & Edelstein, S. J. Nature 272, 506–510 (1978).

    Article  ADS  CAS  Google Scholar 

  3. Dykes, G. W., Crepeau, R. H. & Edelstein, S. J. J. molec. Biol. 130, 451–472 (1979).

    Article  CAS  Google Scholar 

  4. Harris, J. W. Proc. Soc. exp. Biol. Med. 75, 197–201 (1950).

    Article  CAS  Google Scholar 

  5. Ferrone, F. A., Hofrichter, J., Sunshine, H. R. & Eaton, W. A. Biophys. J. 32, 361–380 (1980).

    Article  ADS  CAS  Google Scholar 

  6. Hofrichter, J. J. molec. Biol. 189, 553–571 (1986).

    Article  CAS  Google Scholar 

  7. Briehl, R. W. Nature 288, 622–624 (1980).

    Article  ADS  CAS  Google Scholar 

  8. Gabriel, D. A., Smith, L. A. & Johnson, C. S. Jr Arch. Biochem. Biophys. 211, 774–776 (1981).

    Article  CAS  Google Scholar 

  9. Hofrichter, J., Ross, P. D. & Eaton, W. A. in Proceedings of the Symposium on Molecular and Cellular Aspects of Sickle Cell Disease (eds Hercules, J. I., Cottam, G. L., Waterman, M. R. & Schechter, A. N.) 185–223 (US Dept. Health, Education and Welfare, Bethesda, Maryland, 1976).

    Google Scholar 

  10. Hofrichter, J., Ross, P. D. & Eaton, W. A. Proc. natn. Acad. Sci. U.S.A. 73, 3035–3039 (1976).

    Article  ADS  CAS  Google Scholar 

  11. Briehl, R. W. in Proceedings of the Symposium on Molecular and Cellular Aspects of Sickle Cell Disease (eds Hercules, J. I., Cottam, G. L., Waterman, M. R. & Schechter, A. N.) 145–181 (US Dept. Health, Education and Welfare, Bethesda, Maryland, 1976).

    Google Scholar 

  12. Briehl, R. W. J. molec. Biol. 123, 521–538 (1978).

    Article  CAS  Google Scholar 

  13. Magdoff-Fairchild, B., Poillon, W. N., Li, T.-L. & Bertles, J. F. Proc. natn. Acad. Sci. U.S.A. 73, 990–994 (1976).

    Article  ADS  CAS  Google Scholar 

  14. Goldberg, M. A., Husson, M. A. & Bunn, H. F. J. biol. Chem. 252, 3414–3421 (1977).

    CAS  PubMed  Google Scholar 

  15. Hofrichter, J., Ross, P. D. & Eaton, W. A. Proc. natn. Acad. Sci. U.S.A. 71, 4864–4868 (1974).

    Article  ADS  CAS  Google Scholar 

  16. Malfa, R. & Steinhardt, J. Biochem. biophys. Res. Commun. 59, 887–893 (1974).

    Article  CAS  Google Scholar 

  17. Ferrone, F. A., Hofrichter, J. & Eaton, W. A. J. molec. Biol. 183, 591–610 (1985).

    Article  CAS  Google Scholar 

  18. Briehl, R. W. Am. J. Pediat. Hemat. Oncol. 5, 390–398 (1983).

    Article  CAS  Google Scholar 

  19. Ferrone, F. A., Hofrichter, J. & Eaton, W. A. J. molec. Biol. 183, 611–631 (1985).

    Article  CAS  Google Scholar 

  20. Walker, R. A., Inoue, S. & Salmon, E. D. J. Cell Biol. 108, 931–937 (1989).

    Article  CAS  Google Scholar 

  21. Harris, J. W. & Bensusan, H. B. J. Lab. clin. Med. 86, 564–575 (1975).

    CAS  PubMed  Google Scholar 

  22. Briehl, R. W. Blood Cells 8, 201–212 (1982).

    CAS  PubMed  Google Scholar 

  23. Eaton, W. A., Hofrichter, J. & Ross, P. D. Blood 47, 621–627 (1976).

    CAS  PubMed  Google Scholar 

  24. Walker, R. A. et al. J. Cell Biol. 107, 1437–1448 (1988).

    Article  CAS  Google Scholar 

  25. Briehl, R. W. & Ewert, S. J. molec. Biol. 80, 445–458 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samuel, R., Salmon, E. & Briehl, R. Nucleation and growth of fibres and gel formation in sickle cell haemoglobin. Nature 345, 833–835 (1990). https://doi.org/10.1038/345833a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/345833a0

  • Springer Nature Limited

This article is cited by

Navigation