Skip to main content

Advertisement

Log in

Transposition of an antibiotic resistance element in mycobacteria

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

BACTERIAL resistance to antibiotics is often plasmid-mediated and the associated resistance genes encoded by transposable elements. Mycobacteria, including the human pathogens Mycobacterium tuberculosis and M. leprae, are resistant to many antibiotics, and their cell-surface structure is believed to be largely responsible for the wide range of resistance phenotypes. Antibiotic-resistance plasmids have so far not been implicated in resistance of mycobacteria to antibiotics. Nevertheless, antibiotic-modifying activities such as aminoglycoside acetyltransferases1 and phosphotransferases1 have been detected in fast-growing species2,3. β-lactamases have also been found in most fast- and slow-growing mycobacteria. To date no mycobacterial antibiotic-resistance genes have been isolated and characterized. We now report the isolation, cloning and sequencing of a genetic region responsible for resistance to sulphonamides in M. fortuitum. This region also contains an open reading frame homologous to one present in Tn16964 (member of the Tn21 family) which encodes a site-specific integrase5,6. The mycobacterial resistance element is flanked by repeated sequences of 880 base pairs similar to the insertion elements of the IS6 family found in Gram+ and Gram- bacteria. The insertion element is shown to transpose to different sites in the chromosome of a related fast-growing species, M. smegmatis. The characterization of this element should permit transposon mutagenesis in the analysis of mycobacterial virulence and related problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Udou, T., Mizuguchi, Y. & Yamada, T. Am. Rev. resp. Dis. 133, 653–657 (1986).

    CAS  PubMed  Google Scholar 

  2. Wallace, R. J. Jr, et al. Am. Rev. resp. Dis. 132, 409–416 (1985).

    CAS  PubMed  Google Scholar 

  3. Udou, T., Mizuguchi, Y. & Wallace, R. J. Jr, Am. Rev. resp. Dis. 136, 338–343 (1987).

    Article  CAS  Google Scholar 

  4. Wohlleben, W. et al. Molec. gen. Genet. 217, 202–208 (1989).

    Article  CAS  Google Scholar 

  5. Martinez, E. & de la Cruz, F. Molec. Gen. Genet. 211, 320–325 (1988).

    Article  CAS  Google Scholar 

  6. Sundström, L., Radström, P., Swedberg, G. & Sköld, O. Molec. Gen. Genet. 213, 191–201 (1988).

    Article  Google Scholar 

  7. Trieu-Cuot, P. & Courvalin, P. Gene 30, 113–120 (1984).

    Article  CAS  Google Scholar 

  8. Murphy, E. in Mobile DNA (eds Berg, D. E. & Howe, M. M.) 269–288 (American Society for Microbiology, Washington DC, 1989).

    Google Scholar 

  9. Galas, J. & Chandler, M. in Mobile DNA (eds Berg, D. E. & Howe, M. M.) 109–162 (American Society for Microbiology, Washington DC, 1989).

    Google Scholar 

  10. Thole, J. E. R. et al. Infect. Immunity 55, 1466–1475 (1987).

    CAS  Google Scholar 

  11. Rauzier, J., Moniz-Pereira, J. & Gicquel-Sanzey, B. Gene 71, 315–321 (1988).

    Article  CAS  Google Scholar 

  12. Gicquel-Sanzey, B., Moniz-Pereira, J., Gheorghiu, M. & Rauzier, J. Acta Leprol. 7, 208–211 (1989).

    PubMed  Google Scholar 

  13. Ouellette, M., Bissonnette, L. & Roy, P. H. Proc. natn. Acad. Sci. U.S.A. 84, 7378–7382 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Jacobs, W. R. Jr, Tuckman, M. & Bloom, B. R. Nature 327, 532–535 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Snapper, S. B. et al. Proc. natn. Acad. Sci., U.S.A. 85, 6987–6991 (1988).

    Article  ADS  CAS  Google Scholar 

  16. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning, A Laboratory Manual 2nd edn (Cold Spring Harbor Laboratory, New York, 1989).

    Google Scholar 

  17. Kagan, S. A., thesis, Univ. Wisconsin (1981).

  18. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  19. Deleclus, A., Bourgouin, C., Klier, A. & Rapoport, G. Plasmids 217, 71–78 (1989).

    Article  Google Scholar 

  20. Mollet, B., Iida, S., Shephered, J. & Arber, W. Nucleic Acids Res. 11, 6319–6330 (1983).

    Article  CAS  Google Scholar 

  21. Polzin, K. M. & Shimizu-Kadota, M. J. Bact. 169, 5481–5488 (1987).

    Article  CAS  Google Scholar 

  22. Barberis-Maino, L., Berger-Bächi, B., Weber, H., Beck, W. D. & Kayser, F. H. Gene 59, 107–113 (1987).

    Article  CAS  Google Scholar 

  23. Saurin, W. & Marlière, P. C. r. hebd. Séanc. Acad. Sci., Paris 13, 541–546 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, C., Timm, J., Rauzier, J. et al. Transposition of an antibiotic resistance element in mycobacteria. Nature 345, 739–743 (1990). https://doi.org/10.1038/345739a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/345739a0

  • Springer Nature Limited

This article is cited by

Navigation