Skip to main content

Advertisement

Log in

Several alleles of the multidrug-resistance gene are closely linked to chloroquine resistance in Plasmodium falciparum

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE lethal form of human malaria caused by Plasmodium falciparum is virtually uncontrollable in many areas because of the development of drug resistance, in particular chloroquine resistance (CQR). CQR is biologically similar to the multiple drug resistance phenotype (MDR) of mammalian tumour cells, as both involve expulsion of drug from the cell and both can be reversed by calcium channel antagonists1. A homologue (pfmdr1) of the mammalian multidrug resistance gene has been implicated in CQR because it is amplified in some CQR isolates of P. falciparum2,3 as is an mdr gene in MDR tumour cells4. We show here that the complete sequences of pfmdr1 genes from 2 CQ sensitive (CQS) P. falciparum isolates are identical. In 5 CQR isolates, 1–4 key nucleotide differences resulted in amino acid substitutions. On the basis of these substitutions, we have correctly predicted the CQS/CQR status of a further 34 out of 36 isolates. This is a paradox as CQR arises much less frequently than would be predicted if single point mutations were sufficient. We conclude that a mutated pfmdr1 gene is one of at least two mutated genes required for CQR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krogstad, D. J. et al. Science 238, 1283–1285 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Foote, S. J., Thompson, J. K., Cowman, A. F. & Kemp, D. J. Cell 57, 921–930 (1989).

    Article  CAS  Google Scholar 

  3. Wilson, C. M. et al. Science 244, 1184–1186 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Riordan, J. R. et al. Nature 316, 817–819 (1985).

    Article  ADS  CAS  Google Scholar 

  5. Saiki, R. K. et al. Science 239, 487–491 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Choi, K. H., Che, C. J., Kriegler, M. & Roninson, I. B. Cell 53, 519–529 (1988).

    Article  CAS  Google Scholar 

  7. Harinasuta T., Migasen, S. & Boonag, D. UNESCO First Regional Symposium on Scientific Knowledge of Tropical Parasites. 148–153 (University of Singapore, Singapore, 1962).

    Google Scholar 

  8. Maberti, S. Arch. Venez. Medic. Trop. Parasitol. Med. 3, 239–259 (1960).

    CAS  Google Scholar 

  9. Cowman, A. F. et al. Proc. natn. Acad. Sci. U.S.A. 85, 9109–9113 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Peterson, D., Walliker, D. & Wellems, T. Proc. natn. Acad. Sci. U.S.A. 85, 9114–9118 (1988).

    Article  ADS  CAS  Google Scholar 

  11. Wellems, T. E. et al. Nature 345, 253–255 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Rosario, V. E. Nature 261, 585–586 (1976).

    Article  ADS  CAS  Google Scholar 

  13. Padua, R. A. Exp. Parastiol. 52, 419–426 (1981).

    Article  CAS  Google Scholar 

  14. Cowman, A. F. & Foote, S. J. Int. J. Parasitol. (in the press).

  15. Winship, P. R. Nucleic Acids Res. 17, 1266 (1989).

    Article  CAS  Google Scholar 

  16. Peters, W. in Chemotherapy and Drug Resistance (ed. Peters, W.) 1–876 (Academic, London, 1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foote, S., Kyle, D., Martin, R. et al. Several alleles of the multidrug-resistance gene are closely linked to chloroquine resistance in Plasmodium falciparum. Nature 345, 255–258 (1990). https://doi.org/10.1038/345255a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/345255a0

  • Springer Nature Limited

This article is cited by

Navigation