Skip to main content
Log in

Chloroquine resistance not linked to mdr-like genes in a Plasmodium falciparum cross

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

CHLOROQUINE is thought to act against falciparum malaria by accumulating in the acid vesicles of the parasite and interfering with their function1–4. Parasites resistant to chloroquine expel the drug rapidly in an unaltered form, thereby reducing levels of accumulation in the vesicles5. The discovery that verapamil partially reverses chloroquine resistance in vitro6 led to the proposal that efflux may involve an ATP-driven P-glycoprotein pump similar to that in mammalian multidrug-resistant (mdr) tumor cell lines. Indeed, Plasmodium falciparum contains at least two mdr-like genes7,8, one of which has been suggested to confer the chloroquine resistant (CQR) phenotype7,9,10. To determine if either of these genes is linked to chloroquine resistance, we performed a genetic cross between CQR and chloroquine-susceptible (CQS) clones of P. falciparum. Examination of 16 independent recombinant progeny indicated that the rapid efflux phenotype is controlled by a single gene or a closely linked group of genes. But, there was no linkage between the rapid efflux, CQR phenotype and either of the mdr-like P. falciparum genes or amplification of those genes. These data indicate that the genetic locus governing chloroquine efflux and resistance is independent of the known mdr-like genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krogstad, D. J., Schlesinger, P. H. & Gluzman, I. Y. J. Cell Biol. 101, 2302–2309 (1985).

    Article  CAS  Google Scholar 

  2. Yanon, A., Cabantchik, Z. I. & Ginsburg, H. EMBO J. 3, 2695–2700 (1984).

    Article  Google Scholar 

  3. Yayon, A., Cabantchik, Z. I. & Ginsburg, H. Proc. natn. Acad. Sci. U.S.A. 82, 2784–2788 (1985).

    Article  ADS  CAS  Google Scholar 

  4. Krogstad, D. J. & Schlesinger, P. H. N. Engl. J. Med. 317, 542–549 (1987).

    Article  CAS  Google Scholar 

  5. Krogstad, D. J. et al. Science 238, 1283–1285 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Martin, S. K., Oduola, A. M. & Milhous, W. K. Science 235, 899–901 (1987).

    Article  ADS  CAS  Google Scholar 

  7. Foote, S. J., Thompson, J. K., Cowman, A. F. & Kemp, D. J. Cell 57, 921–930 (1989).

    Article  CAS  Google Scholar 

  8. Wilson, C. M. et al. Science 244, 1184–1186 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Higgins, C. Nature 340, 342–342 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Higgins, C. Nature 341, 103–103 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Bhasin, V. K. & Trager, W. Am. J. trop. Med. Hyg. 33, 534–537 (1984).

    Article  CAS  Google Scholar 

  12. Oduola, A. M., Milhous, W. K., Weatherly, N. F., Bowdre, J. H. & Desjardins, R. E. Expl. Parasit. 67, 354–360 (1988).

    Article  CAS  Google Scholar 

  13. Wellems, T. E. et al. Rev. Bras. Genet. 11, 813–825 (1988).

    Google Scholar 

  14. Walliker, D. et al. Science 236, 1661–1666 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Wellems, T. E. et al. Cell 49, 633–642 (1987).

    Article  CAS  Google Scholar 

  16. Foote, S. J. et al. Nature, this issue.

  17. Peterson, D. S., Walliker, D. & Wellems, T. E. Proc. natnl. Acad. Sci. U.S.A. 85, 9114–9118 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Cowman, A. F., Morry, M. J., Biggs, B. A., Cross, G. A. & Foote, S. J. Proc. natn. Acad. Sci. U.S.A. 85, 9109–9113 (1988).

    Article  ADS  CAS  Google Scholar 

  19. Peterson, D. S., Milhous, W. K. & Wellems T.E. Proc. natn. Acad. Sci. U.S.A. 87, 3018–3022 (1990).

    Article  ADS  CAS  Google Scholar 

  20. Foote, S. J., Galatis, D. & Cowman, A. F. Proc. natn. Acad. Sci. U.S.A. 87, 3014–3017 (1990).

    Article  ADS  CAS  Google Scholar 

  21. Clyde, D. F. Med. Trop. Cooperaz. Sviluppo 3, 3–22 (1987).

    Google Scholar 

  22. Clyde, D. F. Med. Trop. Cooperaz. Sviluppo 3, 41–44 (1987).

    Google Scholar 

  23. Ifediba, T. & Vanderberg, J. P. Nature 294, 364–366 (1981).

    Article  ADS  CAS  Google Scholar 

  24. Ponnudurai, T., Meuwissen, J. H., Leeuwenberg, A. D., Verhave, J. P. & Lensen, A. H. Trans. R. Soc. Trop. Med. Hyg. 76, 242–250 (1982).

    Article  CAS  Google Scholar 

  25. Vanderberg, J. P. & Gwadz, R. W. in Malaria Vol. 2 (ed. Kreier, J. P.) 154–234 (Academic, New York, 1980).

    Google Scholar 

  26. Rosario, V. Science 212, 1037–1038 (1981).

    Article  ADS  CAS  Google Scholar 

  27. Kilejian, A., Sharma, Y. D., Karoui, H. & Naslund, L. Proc. natn. Acad. Sci. U.S.A. 83, 7938–7941 (1986).

    Article  ADS  CAS  Google Scholar 

  28. Pologe, L. G. & Ravetch, J. V. Nature 322, 474–477 (1986).

    Article  ADS  CAS  Google Scholar 

  29. Reese, R. T., Langreth, S. G. & Trager, W. Bull. Wld Hlth Org. 57, 53–61 (1979).

    Google Scholar 

  30. Ravetch, J. V., Kochan, J. & Perkins, M. Science 227, 1593–1597 (1985).

    Article  ADS  CAS  Google Scholar 

  31. Gros, P., Croop, J. & Housman, D. Cell 47, 371–380 (1986).

    Article  CAS  Google Scholar 

  32. Weber, J. L. Gene 52, 103–109 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wellems, T., Panton, L., Gluzman, I. et al. Chloroquine resistance not linked to mdr-like genes in a Plasmodium falciparum cross. Nature 345, 253–255 (1990). https://doi.org/10.1038/345253a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/345253a0

  • Springer Nature Limited

This article is cited by

Navigation