Skip to main content
Log in

Identification and characterization of an inhibitor of haemopoietic stem cell proliferation

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE haemopoietic system has three main compartments: multi-potential stem cells, intermediate stage progenitor cells and mature cells. The availability of simple reproducible culture systems1 has made possible the characterization and purification of regulators of the progenitor cells, including colony-stimulating factors and interleukins. In contrast, our knowledge of the regulators involved in the control of stem cell proliferation is limited. The steady-state quiescent status of the haemopoietic stem cell compartment is thought to be controlled by locally acting regulatory elements present in the stromal microenvironment2, but their purification has been hampered by the lack of suitable culture systems. We have recently developed a novel in vitro colony assay that detects a primitive cell (CPU-A) 3 which has similar proliferative charac-teristics, in normal and regenerating bone marrow, to the CFU-S (haemopoietic stem cells, as defined by the spleen colony assay4) and which responds to CFU-S-specific proliferation regulators. We have now used this assay to purify to homogeneity a macrophage-derived reversible inhibitor of haemopoietic stem cell proliferation (stem cell inhibitor, SCI). Antibody inhibition and sequence data indicate that SCI is identical to a previously described cytokine, macrophage inflammatory protein-lα ( MIP-lα), and that SCI/MIP-lα is functionally and antigenically iden-tical to the CFU-S inhibitory activity obtained from primary cultures of normal bone marrow cells5. The biological activities of SCI/MIP-lα suggest that it is a primary negative regulator of stem cell proliferation and that it has important therapeutic appli-cations in protecting haemopoietic stem cells from damage during cytotoxic therapies for cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Metcalf, D. Molecular Control of Blood Cells (Harvard University Press, 1988).

    Google Scholar 

  2. Toksoz, D., Dexter, T. M., Lord, B. I., Wright, E. G. & Lajtha, L. J. Blood 55, 931–936 (1980).

    CAS  Google Scholar 

  3. Pragnell, I. B. et al. Blood 72, 196–201 (1988).

    CAS  PubMed  Google Scholar 

  4. Till, J. E. & McCulloch, E. A. Radiation Res. 14, 213–222 (1961).

    Article  ADS  CAS  Google Scholar 

  5. Lord, B. I., Mori, K. S., Wright, E. G. & Lajtha, L. G. Br. J. Haematol. 34, 441–445 (1976).

    Article  CAS  Google Scholar 

  6. Wright, E. G. & Lorimore, S. A. Cell Tissue Kinet. 20, 191–203 (1987).

    CAS  PubMed  Google Scholar 

  7. Ralph, P., Prichard, J. & Cohn, M. J. Immun. 114, 898–905 (1975).

    CAS  PubMed  Google Scholar 

  8. Wolpe, S. D. et al. J. exp. Med. 167, 571–581 (1988).

    Article  Google Scholar 

  9. Davatelis, G. et al. J. exp. Med. 167, 1939–1944 (1988).

    Article  CAS  Google Scholar 

  10. Sherry, B. et al. J. exp. Med. 168, 2251–2259 (1988).

    Article  CAS  Google Scholar 

  11. Saiki, R. K. et al. Science 330, 1350–1354 (1985).

    Article  ADS  Google Scholar 

  12. Yang, Y. C. et al. Cell 47, 3–10 (1986).

    Article  CAS  Google Scholar 

  13. Frindel, E. & Guigon, M. Expl Hematol. 5, 74–76 (1977).

    CAS  Google Scholar 

  14. Lenfant, M. et al. Proc. natn. Acad. Sci. U.S.A. 86, 779–782 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Lord, B. I., Mori, K. J. & Wright, E. G. Biomedicine 27, 223–226 (1977).

    CAS  PubMed  Google Scholar 

  16. Wolpe, S. D. & Cerami, A. FASEB J. 3, 2565–2573 (1989).

    Article  CAS  Google Scholar 

  17. Wright, E. G., Sheridan, P. & Moore, M. A. S. Leukaemia Res. 4, 309–319 (1980).

    Article  CAS  Google Scholar 

  18. Lord, B. I. & Wright, E. G. in Maturation Factors and Cancer (ed. Moore, M. A. S) 323–333 (Raven, New York 1982).

    Google Scholar 

  19. Hrynuik, W. & Levine, M. N. J. clin. Oncol. 4, 1162–1166 (1986).

    Article  Google Scholar 

  20. Criswold, D. P. Jr et al. Cancer Res. 47, 2323–2327 (1987).

    Google Scholar 

  21. Spangrude, G. J., Heimfield, S. & Weissman, I. L. Science 241, 58–62 (1988).

    Article  ADS  CAS  Google Scholar 

  22. Lord, B. I. & Spooncer, E. Lymphokine Res. 5, 59–72 (1986).

    CAS  PubMed  Google Scholar 

  23. Ploemacher, R. E. & Brons, N. H. C. Expl Hematol. 16, 27–32 (1988).

    CAS  Google Scholar 

  24. Szilvany, S. L., Lansdorp, P. M., Humphries, R. K., Eaves, A. C. & Eaves, C. J. Blood 74, 930–939 (1989).

    Google Scholar 

  25. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  26. Morrissey, J. H. Analyt. Biochem. 117, 307–310 (1981).

    Article  CAS  Google Scholar 

  27. Wolpe, S. D. et al. Proc. natn. Acad. Sci. U.S.A. 86, 612–616 (1989).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graham, G., Wright, E., Hewick , R. et al. Identification and characterization of an inhibitor of haemopoietic stem cell proliferation. Nature 344, 442–444 (1990). https://doi.org/10.1038/344442a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/344442a0

  • Springer Nature Limited

This article is cited by

Navigation