Skip to main content
Log in

Dependence of catalytic rates on catalyst work function

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE catalytic activity and selectivity of metals can be altered dramatically and reversibly by supplying or removing oxide anions, O2–, at the metal catalyst surface by interfacing the catalyst with an O2– conductor such as zirconia1–6. This effect, termed non-faradaic electrochemical modification of catalytic activity (NEMCA), leads to a steady-state catalytic reaction rate increase up to 3 × 105 times higher than the rate of supply or removal of O2– at the catalyst surface1,3,4. Here we report that β"-Al2O3, which is a Na+ conductor, can also induce the NEMCA effect. Furthermore we show that the origin of the NEMCA effect lies in the controlled variation of catalyst work function on polarization of the metal-solid-electrolyte interface, and demonstrate that the rates of metal-catalysed reactions depend exponentially on the average catalyst work function. Thus the influence of catalyst electronic structure, rather than surface geometry, is here the key factor in catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vayenas, C. G., Bebelis, S. & Neophytides, S. J. phys. Chem. 92, 5083–5085 (1988).

    Article  CAS  Google Scholar 

  2. Yentekakis, I. V. & Vayenas, C. G., J. Catal. 111, 170–188 (1988).

    Article  CAS  Google Scholar 

  3. Vayenas, C. G., Bebelis, S., Neophytides, S. & Yentekakis, I. V. Appl. Phys. A49, 95–103 (1989).

    Article  Google Scholar 

  4. Bebelis, S. & Vayenas, C. G. J. Catal. 118, 125–146 (1989).

    Article  CAS  Google Scholar 

  5. Neophytides, S. & Vayenas, C. G. J. Catal. 118, 147–163 (1989).

    Article  CAS  Google Scholar 

  6. Lintz, H.-G. & Vayenas, C. G. Angew. Chem. 101, 725–732 (1989); Int. Engl. Edn 28, 708–715 (1989).

    Article  CAS  Google Scholar 

  7. Boudart, M. J. Am. chem. Soc. 74, 3556–3561 (1952).

    Article  CAS  Google Scholar 

  8. Sachtler, J. W. A. & Somorjai, G. A. J. Catal. 81, 77–94 (1983).

    Article  CAS  Google Scholar 

  9. Tan, S. A., Grant, R. B. & Lambert, R. M. J. Catal. 106, 54–64 (1987).

    Article  CAS  Google Scholar 

  10. Haller, G. L. & Resasco, D. E. Adv. Catal. 36, 173–235 (1989).

    CAS  Google Scholar 

  11. Catalyst Design: Progress and Perspectives (eds Hegedus, L. L. et al.) (Wiley, New York, 1987).

  12. Studies in Surface Science and Catalysis Vol. 11 (eds Imelik, B. et al.) (Elsevier, Amsterdam, 1982).

  13. Madden, H., Küppers, J. & Ertl, G. J. chem. Phys. 58, 3401–3410 (1973).

    Article  ADS  CAS  Google Scholar 

  14. Arakawa, T., Saito, A. & Shiokawa, J. Appl. Surf. Sci. 16, 365–373 (1983).

    Article  ADS  CAS  Google Scholar 

  15. Feibelman, P. J. & Hamann, D. R. Surf. Sci. 149, 48–66 (1985).

    Article  ADS  CAS  Google Scholar 

  16. Surnev, L. Surf. Sci. 11, 458–470 (1981).

    Article  ADS  Google Scholar 

  17. Bonzel, H. P. Surf. Sci. Rep. 8, 43–125 (1987).

    Article  ADS  CAS  Google Scholar 

  18. Binnig, G. & Rohrer, H. Surf. Sci. 126, 236–244 (1983).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vayenas, C., Bebelis, S. & Ladas, S. Dependence of catalytic rates on catalyst work function. Nature 343, 625–627 (1990). https://doi.org/10.1038/343625a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/343625a0

  • Springer Nature Limited

This article is cited by

Navigation