Skip to main content
Log in

Turnover of fluorescently labelled tubulin and actin in the axon

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE cytoskeleton has an important role in the generation and maintenance of the structure of the axon1,2. Microtubules, neurofilaments and actin, together with various kinds of associated proteins, form highly organized dynamic cytoskeletal structures2–4. Because tubulin and actin molecules are essential cytoskeletal components2 and are transported down the axon5,6, it is important to understand their dynamic behaviour within the axon. Although previous pulse-labelling studies have indicated that the axonal cytoskeleton is a static complex travelling down the axon6, this view has been challenged by the results of several recent experiments7–14. We have now addressed this question by analysing the recovery of fluorescence after photobleaching fluorescent analogues of tubulin and actin in the axons of cultured neurons. We did not observe movement or spreading of bleached zones along the axon, both in neurons injected with fluorescein-labelled tubulin and actin. All bleached zones recovered their fluorescence gradually, however, indicating that microtubules and actin filaments are not static polymers moving forward within the axon, but are dynamic structures that continue to assemble along the length of the axon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mitchison, T. & Kirschner, M. Neuron 1, 761–772 (1988).

    Article  CAS  Google Scholar 

  2. Hirokawa, N. J. Cell Biol. 94, 129–142 (1982).

    Article  CAS  Google Scholar 

  3. Hirokawa, N., Glicksman, M. A. & Willard, M. B. J. Cell Biol. 98, 1523–1536 (1984).

    Article  CAS  Google Scholar 

  4. Hirokawa, N., Bloom, G. S. & Vallee, R. B. J. Cell Biol. 101, 227–239 (1985).

    Article  CAS  Google Scholar 

  5. Willard, M., Cowan, W. M. & Vagelos, P. R. Proc. natn. Acad. Sci. U.S.A. 71, 2183–2187 (1974).

    Article  ADS  CAS  Google Scholar 

  6. Black, M. M. & Lasek, R. J. J. Cell Biol. 86, 616–623 (1980).

    Article  CAS  Google Scholar 

  7. Bamburg, J. R., Bray, D. & Chapman, K. Nature 321, 788–790 (1986).

    Article  ADS  CAS  Google Scholar 

  8. Nixon, R. A. & Logvinenko, K. B. J. Cell Biol. 102, 647–659 (1986).

    Article  CAS  Google Scholar 

  9. Weisenberg, R. C. et al. Science 238, 1119–1122 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Kosik, K. S. & Finch, E. A. J. Neurosci. 7, 3142–3153 (1987).

    Article  CAS  Google Scholar 

  11. Okabe, S. & Hirokawa, N. J. Cell biol. 107, 651–664 (1988).

    Article  CAS  Google Scholar 

  12. Okabe, S. & Hirokawa, N. Proc. natn. Acad Sci. U.S.A. 86, 4127–4131 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Hollenbeck, P. J. J. Cell Biol. 108, 223–227 (1989).

    Article  CAS  Google Scholar 

  14. Lim, S.-S., Sammak, P. J. & Borisy, G. G. J. Cell Biol. 109, 253–263 (1989).

    Article  CAS  Google Scholar 

  15. Vigers, G. P. A., Coue, M. & Mclntosh, J. R. J. Cell Biol. 107, 1011–1024 (1988).

    Article  CAS  Google Scholar 

  16. Keith, C. H. Science 235, 337–339 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Axelrod, D., Koppel, D. E., Schlessinger, J., Elson, E. L. & Webb, W. W. Biophys. J. 16, 1055–1069 (1976).

    Article  ADS  CAS  Google Scholar 

  18. Wolf, D. E. Meth. Cell Biol. 30, 271–306 (1989).

    Article  CAS  Google Scholar 

  19. Kreis, T. E., Geiger, B. & Schlessinger, J. Cell 29, 835–845 (1982).

    Article  CAS  Google Scholar 

  20. Salmon, E. D., Saxton, W. M., Leslie, R. J., Karow, M. L. & Mclntosh, J. R. J. Cell Biol. 99, 2157–2164 (1984).

    Article  CAS  Google Scholar 

  21. Oblinger, M. M., Brady, S. T., McQuarrie, I. G. & Lasek, R. J. J. Neurosci. 7, 453–462 (1987).

    Article  CAS  Google Scholar 

  22. Tashiro, T. & Komiya, Y. J. Neurosci. 9, 760–768 (1989).

    Article  CAS  Google Scholar 

  23. Sammak, P. J. & Borisy, G. G. Nature 332, 724–726 (1988).

    Article  ADS  CAS  Google Scholar 

  24. Schulze, E. & Kirschner, M. Nature 334, 356–359 (1988).

    Article  ADS  CAS  Google Scholar 

  25. Wang, Y. L. J. Cell Biol. 101, 597–602 (1985).

    Article  CAS  Google Scholar 

  26. Okabe, S. & Hirokawa, N. J. Cell Biol. 109, 1581–1595 (1989).

    Article  CAS  Google Scholar 

  27. Vikstrom, K. L., Borisy, G. G. & Goldman, R. D. Proc. natn. Acad. Sci. U.S.A. 86, 549–553 (1989).

    Article  ADS  CAS  Google Scholar 

  28. Kellog, D. R., Mitchison, T. J. & Alberts, B. M. Development 103, 675–686 (1988).

    Google Scholar 

  29. Goldenberg, S. S. S. & De Boni, U. J. Neurobiol. 14, 195–206 (1983).

    Article  CAS  Google Scholar 

  30. Hamaguchi, Y., Toriyama, M., Sakai, H. & Hiramoto, Y. Cell Struct. Funct. 12, 43–52 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okabe, S., Hirokawa, N. Turnover of fluorescently labelled tubulin and actin in the axon. Nature 343, 479–482 (1990). https://doi.org/10.1038/343479a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/343479a0

  • Springer Nature Limited

This article is cited by

Navigation