Skip to main content
Log in

Intermediate states in the movement of transfer RNA in the ribosome

  • Article
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Direct chemical 'footprinting' shows that translocation of transfer RNA occurs in two discrete steps. During the first step, which occurs spontaneously after the formation of the peptide bond, the acceptor end of tRNA moves relative to the large ribosomal subunit resulting in 'hybrid states' of binding. During the second step, which is promoted by elongation factor EF-G, the anticodon end of tRNA, along with the messenger RNA, moves relative to the small ribosomal subunit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hardesty, B. & Kramer, G. (eds) Structure, Function and Genetics of Ribosomes (Springer, New York, 1986).

    Google Scholar 

  2. Watson, J. D. Bull. Soc. chim. Biol. 46, 1399–1425 (1964).

    CAS  PubMed  Google Scholar 

  3. Rheinberger, H., Sternbach, H. & Nierhaus, K. H. Proc. natn. Acad. Sci. U.S.A. 78, 5310–5314 (1981).

    Article  ADS  CAS  Google Scholar 

  4. Grajevskaja, R. A., Ivanov, Y. V. & Saminsky, E. M. Eur. J. Biochem. 128, 47–52 (1982).

    Article  CAS  Google Scholar 

  5. Kirillov, S. V., Makarov, E. M. & Semenkov, Yu. P. FEBS Lett. 157, 91–94 (1983).

    Article  CAS  Google Scholar 

  6. Lill, R., Robertson, J. M. & Wintermeyer, W. Biochemistry 23, 6710–6717 (1984).

    Article  CAS  Google Scholar 

  7. Wettstein, F. O. & Noll, H. J. Molec. Biol. 11, 35–53 (1965).

    Article  CAS  Google Scholar 

  8. Hardesty, B., Culp, W. & McKeehan, W. Cold Spring Harb. Symp. quant. Biol. 34, 331–345 (Cold Spring Harbor, New York, 1969).

    Article  CAS  Google Scholar 

  9. Robin, D. & Hardesty, B. Biochemistry 22, 5675–5679 (1983).

    Article  Google Scholar 

  10. Lake, J. A. Proc. natn. Acad. Sci. U.S.A. 74, 1903–1907 (1977).

    Article  ADS  CAS  Google Scholar 

  11. Skogerson, L. & Moldave, K. Archs Biochem. Biophys. 125, 497–505 (1968).

    Article  CAS  Google Scholar 

  12. Noller, H. F. A. Rev. Biochem. 53, 119–162 (1984).

    Article  CAS  Google Scholar 

  13. Moazed, D., Stern, S. & Noller, H. F. J. Molec. Biol. 187, 399–416 (1986).

    Article  CAS  Google Scholar 

  14. Stern, S., Moazed, D. & Noller, H. F. Meth. Enzym. 164, 481–489 (1988).

    Article  CAS  Google Scholar 

  15. Moazed, D. & Noller, H. F. Cell 47, 985–994 (1986).

    Article  CAS  Google Scholar 

  16. Moazed, D. & Noller, H. F. J. molec. Biol. (in the press).

  17. Moazed, D. & Noller, H. F. Cell 57, 585–597 (1989).

    Article  CAS  Google Scholar 

  18. Traut, R. R. & Monro, R. E. J. Molec. Biol. 10, 63–72 (1964).

    Article  CAS  Google Scholar 

  19. Lill, R., Robertson, J. M. & Wintermeyer, W. Biochemistry 25, 3245–3255 (1986).

    Article  CAS  Google Scholar 

  20. Gupta, S. L., Waterson, J., Sopori, M. L., Weissman, S. M. & Lengyel, P. Biochemistry 10, 4410–4421 (1971).

    Article  CAS  Google Scholar 

  21. Thach, S. S. & Thach, R. E. Proc. natn. Acad. Sci. U.S.A. 68, 1791–1795 (1971).

    Article  ADS  CAS  Google Scholar 

  22. Pestka, S. J. biol. Chem. 243, 2810–2820 (1968).

    CAS  PubMed  Google Scholar 

  23. Gavrilova, L. P. & Spirin, A. S. FEBS Letts. 17, 324–326 (1971).

    Article  CAS  Google Scholar 

  24. de Groot, N., Panet, A. & Lapidot, Y. Eur. J. Biochem. 23, 523–527 (1971).

    Article  CAS  Google Scholar 

  25. Watanabe, S. J. Molec. Biol. 67, 443–457 (1972).

    Article  CAS  Google Scholar 

  26. Watanabe, S. J. molec. Biol. 114, 135–148 (1966).

    Google Scholar 

  27. Lill, R. et al. J. molec. Biol. 203, 699–705 (1988).

    Article  CAS  Google Scholar 

  28. Moazed, D., Robertson, J. M. & Noller, H. F. Nature 334, 362–364 (1988).

    Article  ADS  CAS  Google Scholar 

  29. Hopfield, J. J. Proc. natn. Acad. Sci. U.S.A. 71, 4135–4139 (1974).

    Article  ADS  CAS  Google Scholar 

  30. Ninio, J. Biochimie 57, 587–595 (1975).

    Article  CAS  Google Scholar 

  31. Hardesty, B., Odom, O. W. & Deng, H.-Y. in Structure, Function and Genetics of Ribosomes (eds Hardesty, B. & Kramer, G.) 495–508 (Springer, New York, 1986).

    Google Scholar 

  32. Odom, O. M. & Hardesty, B. Biochimie 69, 925–938 (1987).

    Article  CAS  Google Scholar 

  33. Gassen, H. G. Prog. Nucleic Acid Res. molec. Biol. 24, 57–86 (1980).

    Article  CAS  Google Scholar 

  34. Moras, D. et al. J. Biomolec. Str. Dynam. 3, 479–493 (1985).

    Article  CAS  Google Scholar 

  35. Lake J. A. in Ribosomes: Structure, Function and Genetics (eds Chamblis, G. et al.) 207–236 (University Park, Baltimore, 1980).

    Google Scholar 

  36. Bretscher, M. S. Nature 218, 675–677 (1968).

    Article  ADS  CAS  Google Scholar 

  37. Spirin, A. S. Cold Spring Harb. Symp. quant. Biol. 34, 197–207 (Cold Spring Harbor, New York, 1969).

    Google Scholar 

  38. Bretscher, M. S. Nature 218, 675–677 (1968).

    Article  ADS  CAS  Google Scholar 

  39. Moazed, D. & Noller, H. F. Nature 327, 389–394 (1987).

    Article  ADS  CAS  Google Scholar 

  40. Nirenberg, M. & Leder, P. Science 145, 1399–1407 (1964).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moazed, D., Noller, H. Intermediate states in the movement of transfer RNA in the ribosome. Nature 342, 142–148 (1989). https://doi.org/10.1038/342142a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/342142a0

  • Springer Nature Limited

This article is cited by

Navigation