Skip to main content
Log in

Beryllium in marine pore waters: geochemical and geochronological implications

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

DIAGENETIC remobilization and hydrothermal inputs have been invoked as possible explanations for the discrepancy between the theoretical and measured temporal decrease of the non-detrital 10Be/9Be ratio observed in sediments1. Remobilization is also consistent with water-column profiles of beryllium, which indicate a significant benthic flux from sediments2. To evaluate the impact of diagenetic recycling on the beryllium isotopic composition of marine waters and the effects of this process on the beryllium geochronometer, we have analysed the9.Be content of interstitial waters from different environments. Here we report the first pore-water profiles for 9Be in oxic and suboxic pore waters as well as some preliminary results from hydrothermal sediments collected in the Guaymas Basin. Our results suggest that the use of the beryllium isotopes as a geochronometer is not affected either by sedimentary diagenesis at oxic and suboxic sites or by input of hydrothermally derived 9Be more than a few kilometres from vent sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourlès, D. L., Raisbeck, G. M. & Yiou, F. Geochim. cosmochim. Acta 53, 443–452 (1989).

    Article  ADS  Google Scholar 

  2. Measures, C. I. & Edmond, J. M. Nature 297, 51–53 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Reimers, C. E. & Smith, K. L. Jr Limnol. Oceanogr. 31, 305–318 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Campbell, A. C., Gieskes, J. M., Lupton, J. E. & Lonsdale, P. F. Geochim. cosmochim. Acta 52, 345–357 (1988).

    Article  ADS  CAS  Google Scholar 

  5. Measures, C. I. & Edmond, J. M. Anal. Chem. 58, 2065–2069 (1986).

    Article  CAS  Google Scholar 

  6. Shaw, T. J. thesis, Univ. of California, San Diego (1988).

  7. Kusakabe, M. et al. Earth planet. Sci. Lett. 82, 231–240 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Li, Y. H. & Gregory, S. Geochim. cosmochim. Acta 38, 703–714 (1974).

    Article  ADS  CAS  Google Scholar 

  9. Buchholtz, M. thesis, Columbia Univ. (1987).

  10. Broecker, W. S. & Peng, T. H. Tracers in the Sea (Lamont-Doherty Geological Observatory, New York, 1982).

    Google Scholar 

  11. Bourlès, D. L. et al. Nucl. Instrum. Meth. 233, 365–370 (1985).

    Google Scholar 

  12. Martin, J. H. & Knauer, G. A. Geochim. cosmochim. Acta 37, 1639–1653 (1973).

    Article  ADS  CAS  Google Scholar 

  13. Alexander, G. B., Heston, W. M. & Iler, R. K. J. phys. Chem. 58, 453–455 (1954).

    Article  CAS  Google Scholar 

  14. Bischoff, J. L. & Ku, T. L. J. Sedim. Petrology 40, 960–972 (1970).

    CAS  Google Scholar 

  15. Von Damm, K. L., Edmond, J. M., Measures, C. I. & Grant, B. Geochim. cosmochim. Acta 49, 2221–2237 (1985).

    Article  ADS  CAS  Google Scholar 

  16. Bourlès, D. L. et al. Eos 70, 494 (1989).

    Google Scholar 

  17. Campbell, A. C. thesis, Univ. California, San Diego (1985).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourlès, D., Klinkhammer, G., Campbell, A. et al. Beryllium in marine pore waters: geochemical and geochronological implications. Nature 341, 731–733 (1989). https://doi.org/10.1038/341731a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/341731a0

  • Springer Nature Limited

This article is cited by

Navigation