Skip to main content
Log in

Identification of a novel retinoic acid receptor in regenerative tissues of the newt

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

IN urodele amphibians, the progenitor cells that regenerate amputated limbs (known as the blastema) normally replace only the missing structures1. After systemic delivery of retinoic acid (RA), more proximal structures are also formed, indicating that RA can control position specification in the proximal–distal axis of the regenerating limb2–4. According to dose and experimental context, retinoids can also re-specify the anteroposterior axis of the limb, induce deletions of skeletal elements, or block re-growth completely2, 5–10. To study the molecular basis of these morphogenetic effects, we screened complementary DNA libraries of newt regenerative tissues (limbs and tails) for hormone nuclear receptors activated by RA11–17. Two functional retinoic acid receptors (RARs) were identified, one of which is the newt homologue of the human α-receptor (RARα). The second receptor, called RARδ, is novel. Sequence analysis suggests that the composite newt RAR previously reported18 is chimaeric, consisting of 5'RAR-β-like and 3' RARδclones. We conclude that multiple RARs are expressed during limb regeneration in amphibians and suggest that receptor heterogeneity may underlie the different effects of retinoids on limb morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wallace, H. Vertebrate Limb Regeneration (Wiley, Chichester, 1981).

    Google Scholar 

  2. Niazi, I. A. & Saxena, S. Folia Biol., Krakow 26, 3–11 (1978).

    CAS  Google Scholar 

  3. Maden, M. Nature 295, 672–675 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Stocum, D. L. & Crawford, K. Biochem. Cell Biol. 65, 750–761 (1987).

    Article  CAS  PubMed  Google Scholar 

  5. Brockes, J. P. Neuron 2, 1285–1294 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Maden, M. Devl. Biol. 98, 409–416 (1983).

    Article  CAS  Google Scholar 

  7. Kim, W.-S. & Stocum, D. L. Devl Biol. 114, 170–179 (1986).

    Article  CAS  Google Scholar 

  8. Maden, M., Keeble, S. & Cox, R. A. Wilhelm Roux Arch. dev. Biol. 194, 228–235 (1985).

    Article  CAS  Google Scholar 

  9. Tickle, C. Alberts, B., Wolpert, L. & Lee, J. Nature 296, 564–565 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Summerbell, D. J. Embryol. exp. Morph. 78, 269–289 (1983).

    CAS  PubMed  Google Scholar 

  11. Petkovich, M., Brand, N. J., Krust, A. & Chambon, P. Nature 330, 444–450 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Giguere, V., Ong, E. S., Segui, P. & Evans, R. M. Nature 330, 624–629 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. de The, H., Marchio, A., Tiollais, P. & Dejean, A. Nature 330, 667–670 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Brand, N. J. et al. Nature 332, 850–853 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Benbrook, D., Lernhardt, E. & Pfahl, M. Nature 333, 669–672 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Zelent, A., Krust, A., Petkovich, M., Kastner, P. & Chambon, P. Nature 339, 714–717 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Krust, A., Kastner, P., Petkovich, M., Zelent, A. & Chambon, P. Proc. natn. Acad. Sci. U.S.A. 86, 5310–5314 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Giguere, V., Ong, E. S., Evans, R. M. & Tabin, C. J. Nature 337, 566–569 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Kozak, M. Nucleic Acids Res. 15, 8125–8148 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Green, S., Kumar, V., Theulaz, I., Wahli, W. & Chambon, P. EMBO J. 7, 3037–3044 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mader, S., Kumar, V., de Verneuil, H. & Chambon, P. Nature 338, 271–274 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Maden, M. J. Embryol. exp. Morph. 77, 273–295 (1983).

    CAS  PubMed  Google Scholar 

  23. Scadding, S. R. & Maden, M. J. Embryol. exp. Morph. 91, 19–34 (1986).

    CAS  PubMed  Google Scholar 

  24. Scadding, S. R. & Maden, M. J. Embryol. exp. Morph. 91, 35–53 (1986).

    CAS  PubMed  Google Scholar 

  25. Ferretti, P. & Brockes, J. P. J. exp. Zool. 247, 77–91 (1988).

    Article  CAS  PubMed  Google Scholar 

  26. Krust, A. et al. EMBO J. 5, 891–897 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tora, L., Gronemeyer, H., Turcotte, B., Gaub, M.-P. & Chambon, P. Nature 333, 185–188 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Kintner, C. R. & Brockes, J. P. J. Embryol. exp. Morph. 89, 37–55 (1985).

    CAS  PubMed  Google Scholar 

  29. Savard, P., Gates, P. B. & Brockes, J. P. EMBO J. 7, 4275–4282 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J. & Rutter, W. J. Biochemistry 18, 5294–5299 (1979).

    Article  CAS  PubMed  Google Scholar 

  31. Maniatis, T., Fritsch, E. & Sambrook, J. Molecular Cloning. A Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ragsdale, C., Petkovich, M., Gates, P. et al. Identification of a novel retinoic acid receptor in regenerative tissues of the newt. Nature 341, 654–657 (1989). https://doi.org/10.1038/341654a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/341654a0

  • Springer Nature Limited

This article is cited by

Navigation