Skip to main content

Advertisement

Log in

Post-depositional stability of long-chain alkenones under contrasting redox conditions

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

PRYMNESIOPHYTE algae, which include the coccolithophorid species Emiliania huxleyi1, are the recognized biological source of a series of long-chain (C37, c38, 39, unsaturated methyl and ethyl ketones2 widely observed in marine sediments3. Studies of E. huxleyi in culture have demonstrated that these biomarkers are attractive geochemical tools for palaeoceanographic study. No-tably, unsaturation patterns within the alkenone series change regularly with growth temperature3–5 and the total alkenone abundance in the living plant cell is relatively constant, accounting for 5–10% of the total cellular organic carbon5. If these com-pounds are relatively well-preserved in sediments, profiles of alkenone unsaturation patterns and total alkenone concentration with depth in dated deep-sea cores6–8 provide a temporal record of sea surface temperatures and the productivity of an important group of marine phytoplankton3–5. Here we analyse the long-chain alkenone composition of sediment samples from above and below an oxidation front in an ungraded turbidite layer9 deposited 140 ±12 kyr BP in the Madeira Abyssal Plain10, to evaluate the post-depositional stability of these biomarkers under contrasting redox conditions. The results demonstrate that >85% of the total amount of these compounds is degraded over ∼8 kyr as a consequence of diffusion-controlled oxidation10. Remarkably, such extensive degradative loss has little effect on the unsaturation pattern of the residual biomarker series. Thus, we find that long-chain alkenones provide reliable indicators of sea surface temperature in the ocean. The total abundance of these biomarkers in sediments, however, is controlled not only by prymnesiophyte productivity, but also by their degree of exposure to oxidative degradation in the sedimentary process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Okada, H. & Honjo, S. Deep Sea Res. 26, 355–374 (1973).

    Google Scholar 

  2. Marlowe, I. T. et al. Br. phycol. J. 19, 203–216 (1984).

    Article  Google Scholar 

  3. Brassell, S. C. et al. Nature 320, 129–133 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Prahl, F. G. & Wakeham, S. G. Nature 330, 367–369 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Prahl, F. G., Muehlhausen, L. A. & Zahnle, D. L. Geochim. cosmochim. Acta 52, 2303–2310 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Farrington, J. W. et al. Org. Geochem. 13, 607–617 (1988).

    Article  CAS  Google Scholar 

  7. Jasper, J. P. thesis, Woods Hole Oceanographic Institution (1988).

  8. Prahl, F. G., Muehlhausen, L. A. & Lyle, M. W. Paleoceanography (in the press).

  9. Wilson, T. R. S. et al. Geochim. cosmochim. Acta 49, 811–822 (1985).

    Article  ADS  CAS  Google Scholar 

  10. Buckley, D. E. & Cranston, R. E. Geochim. cosmochim. Acta 52, 2925–2939 (1988).

    Article  ADS  CAS  Google Scholar 

  11. de Lange, G. J., Jarvis, I. & Kuipers, A. in Geology and Geochemistry of Abyssal Plains, Geol. Soc., Spec. publ. 31, 147–161 (1987).

    Google Scholar 

  12. Weaver, P. P. E. & Kuipers, A. Nature 306, 360–363 (1983).

    Article  ADS  Google Scholar 

  13. Weaver, P. P. E. & Rothwell, R. G. in Geology and Geochemistry of Abyssal Plains, Geol. Soc., Spec. publ. 31, 71–86 (1987).

    Google Scholar 

  14. McCave, I. N. & Jones, K. P. N. Nature 333, 250–252 (1988).

    Article  ADS  Google Scholar 

  15. Thomson, J. et al. in Geology and Geochemistry of Abyssal Plains, Geol. Soc., Spec. publ 31, 167–177 (1987).

    Google Scholar 

  16. ten Haven, H. L. et al. Mar. Geol. 75, 137–156 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Volkman, J. K. et al. in Advances in Organic Geochemistry 1981 (ed. Bjoroy, M.) 228–240 (Wiley, 1983).

    Google Scholar 

  18. Prahl, F. G. & Muehlhausen, L. A. in Productivity in the Oceans: Present and Past (eds Berger, W. H., Smetacek, V. S. & Wefer, G.) 271–289 (Wiley, 1989).

    Google Scholar 

  19. Suess, E. Nature 288, 260–263 (1980).

    Article  ADS  CAS  Google Scholar 

  20. Emerson, S. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archaen to Present (eds Sundquist, E. T. & Broecker, W. S.) 78–87 (American Geophysical Union, 1985).

    Google Scholar 

  21. Finney, B. P., Lyle, M. W. & Heath, G. R. Paleoceanography 3, 169–189 (1988).

    Article  ADS  Google Scholar 

  22. Haxo, F. T. J. Phycol. 21, 282–287 (1985).

    Article  CAS  Google Scholar 

  23. Weliky, K. et al. Limnol. Oceanogr. 28, 1252–1259 (1983).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prahl, F., de Lange, G., Lyle, M. et al. Post-depositional stability of long-chain alkenones under contrasting redox conditions. Nature 341, 434–437 (1989). https://doi.org/10.1038/341434a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/341434a0

  • Springer Nature Limited

This article is cited by

Navigation