Skip to main content

Advertisement

Log in

Fibronectin inhibits the terminal differentiation of human keratinocytes

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

IN the epidermis proliferation of keratinocytes is restricted to the basal layer, which is in contact with the basement membrane, and cells undergo terminal differentiation as they move upwards through the suprabasal layers. In stratified cultures of human keratinocytes, upward migration is a consequence, not a cause, of terminal differentiation1 and occurs because keratinocytes become less adhesive to their substratum and to one another2. Most keratinocytes can be induced to differentiate to completion by placing them in suspension in methylcellulose3: within 12 h DNA synthesis is irreversibly inhibited and by 24 h most cells express involucrin (ref 4; P. A. Hall, J.C.A. and F.M.W., unpublished observations). Here we report that when fibronectin is added to the methylcellulose, keratinocytes still withdraw from the cell cycle, but induction of involucrin expression is largely inhibited. The effect of fibronectin is concentration- and time-dependent and is mediated by a receptor of the integrin family5. These results provide an explanation for why overt terminal differentiation is normally restricted to suprabasal cells, whereas cell-cycle withdrawal occurs within the basal layer; they also have important implications for the mechanism of epidermal wound healing. Furthermore, our data show that the binding of an extracellular matrix protein to its receptor can regulate differentiated gene expression in the absence of changes in cell shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Watt, F. M. & Green, H. Nature 295, 434–436 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Watt, F. M. J. Cell Biol. 98, 16–21 (1984).

    Article  CAS  Google Scholar 

  3. Green, H. Cell 11, 405–416 (1977).

    Article  CAS  Google Scholar 

  4. Watt, F. M., Jordan, P. W. & O'Neill, C. H. Proc. natn. Acad. Sci. U.S.A. 85, 5576–5580 (1988).

    Article  ADS  CAS  Google Scholar 

  5. Ruoslahti, E. A. Rev. Biochem. 57, 375–413 (1988).

    Article  CAS  Google Scholar 

  6. Watt, F. M. J. Cell Sci. Suppl. 8, 313–326 (1987).

    Article  CAS  Google Scholar 

  7. Fava, R. A. & McClure, O. B. J. cell Physiol. 131, 184–189 (1983).

    Article  Google Scholar 

  8. Anzano, M. A., Roberts, A. B. Smith, J. M., Sporn, M. B. & De Larco, J. E. Proc. natn. Acad. Sci. U.S.A. 80, 6264–6268 (1983).

    Article  ADS  CAS  Google Scholar 

  9. Potten, C. S. & Morris, R. J. J. Cell Sci. Suppl. 10, 45–62 (1988).

    Article  CAS  Google Scholar 

  10. Pierschbacher, M. D. & Ruoslahti, E. Nature 309, 30–33 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Hynes, R. O. Cell 48, 549–554 (1987).

    Article  CAS  Google Scholar 

  12. Akiyama, S. K. & Yamada, K. M. J. biol. Chem. 260, 10402–10405 (1985).

    CAS  PubMed  Google Scholar 

  13. Stenman, S. & Vaheri, A. J. exp. Med. 147, 1054–1064 (1978).

    Article  CAS  Google Scholar 

  14. Grinnell, F., Toda, K-I. & Takashima, A. J. Cell Sci. Suppl. 8, 199–209 (1987).

    Article  CAS  Google Scholar 

  15. Colvin, R. B. in Fibronectin (ed. Mosher, D. F.) 213–252 (Academic, New York, 1989).

    Book  Google Scholar 

  16. Pennypacker, J. P., Hassell, J. R., Yamada, K. M. & Pratt, R. M. Expl Cell Res. 121, 411–415 (1979).

    Article  CAS  Google Scholar 

  17. Podleski, T. R., Greenberg, I., Schlessinger, J. & Yamada, K. M. Expl Cell Res. 122, 317–326 (1979).

    Article  CAS  Google Scholar 

  18. West, C. M. et al. Cell 17, 491–501 (1979).

    Article  CAS  Google Scholar 

  19. Spiegelman, B. M. & Ginty, C. A. Cell 35, 657–666 (1983).

    Article  CAS  Google Scholar 

  20. Patel, V. P. & Lodlsh, H. F. J. Cell Biol. 105, 3105–3118 (1987).

    Article  CAS  Google Scholar 

  21. Adams, J. C. & Watt, F. M. J. Cell Biol. 107, 1927–1938 (1988).

    Article  CAS  Google Scholar 

  22. Read, J. & Watt, F. M. J. invest. Dermat. 90, 739–743 (1988).

    Article  CAS  Google Scholar 

  23. Rupniak, H. T., Turner, D. M., Wood, E. J. & Cunliffe, W. J. J. invest. Dermat. 87, 164 (1986).

    Google Scholar 

  24. Zardi, L. et al. Eur. J. Biochem. 146, 571–579 (1985).

    Article  CAS  Google Scholar 

  25. Yamada, K. M. In Fibronectin (ed. Mosher, D. F.) 47–121 (Academic, New York, 1989).

    Book  Google Scholar 

  26. Dedhar, S., Argaves, W. R., Suzuki, S., Ruoslahti, E. & Pierschbacher, M. D. J. Cell Biol. 105, 1175–1182 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, J., Watt, F. Fibronectin inhibits the terminal differentiation of human keratinocytes. Nature 340, 307–309 (1989). https://doi.org/10.1038/340307a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/340307a0

  • Springer Nature Limited

This article is cited by

Navigation