Skip to main content
Log in

Isotopic tracers of lead contamination in the Great Lakes

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

FLUXES of lead to the Great Lakes are dominated by atmospheric depositions of industrial lead, which account for ∼ 64% of the lead inputs to Lake Ontario and >90% of the inputs to Lake Superior1. It has recently been demonstrated that lead aerosols in the Great Lakes region may be identified by the contrasting 206Pb/207Pb ratios of industrial leads from the United States (1.221 ±0.009) and Canada (1.151 ±0.010)2. Here we show that those ratios may also be used to identify and trace industrial lead inputs to the Great Lakes. These corroborate spatial gradients in lead concentrations in surface waters, which range from 290 pmol kg−1 in Hamilton Harbour to <10 pmol kg−1 in the central waters of Lake Ontario. The latter concentrations and corresponding residence-time estimates, which are both an order of magnitude lower than previously reported, indicate that lead is rapidly scavenged in the epilimnion during periods of high primary productivity. We find that industrial lead from Canada and the United States are the two principal sources of lead contamination in the Great Lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nriagu, J. O. in The Role of the Oceans as a Waste Disposal, 441–468 (Reidel, Dordrecht, 1986).

    Book  Google Scholar 

  2. Sturges, W. T. & Barrie, L. A. Nature 329, 144–146 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Regal, A. R. & Patterson, C. C. Earth planet Sci. Lett. 64, 19–32 (1983).

    Article  ADS  Google Scholar 

  4. Flegal, A. R. & Stukas, V. J. Mar. Chem. 22, 163–177 (1987).

    Article  CAS  Google Scholar 

  5. Bruland, K. W., Coale, K. H. & Mart, L. Mar. Chem. 17, 285–300 (1985).

    Article  CAS  Google Scholar 

  6. Coale, K. H. & Flegal, A. R. Sci. tot. Envir. (in the press).

  7. Hudson, B. thesis, Washington Univ. (1981).

  8. Lum, K. R., Kokotich, E. A. & Schroeder, W. H. Sci. tot. Envir. 63, 161–173 (1987).

    Article  CAS  Google Scholar 

  9. Sigg, L. in Chemical Processes in Lakes (Wiley, New York, 1985).

    Google Scholar 

  10. Trefry, J. H., Metz, S., Troche, R. P. & Nelson, T. A. Science 230, 439–441 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Honeyman, B. D. & Santschi, P. Envir. Sci. Technol. 22, 862 (1988).

    Article  ADS  CAS  Google Scholar 

  12. Munawar, M. & Munawar, I. F. Hydrobiologia 247, 181 (1986).

    Google Scholar 

  13. Boyle, E. A., Chapnick, S., Shen, G. T. & M. P. Bacon, M. P. J. geophys. Res. 91, 8573–8593 (1986).

    Article  ADS  CAS  Google Scholar 

  14. Lead in the Canadian Environment: Science and Regulation, Final Report of the Commission of Lead in the Environment. Royal Society of Canada. Ottawa (1986).

  15. Air Quality Criteria for Lead, U.S. Environmental Protection Agency, Triangle Park (1986).

  16. Stukas, V. J. & Wong, C. S. Science 211, 1424–1427 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Flegal, A. R., Rosman, K. J. & Stephenson, M. R. Envir. Sci. Technol. 21, 1075–1079 (1987).

    Article  ADS  CAS  Google Scholar 

  18. Schindler, D. W. Science 239, 149–157 (1988).

    Article  ADS  CAS  Google Scholar 

  19. Maring, H., Settle, D. M., Buat-Menard, P., Dulac, F. & Patterson, C. C. Nature 330, 154–156 (1987).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flegal, A., Nriagu, J., Niemeyer, S. et al. Isotopic tracers of lead contamination in the Great Lakes. Nature 339, 455–458 (1989). https://doi.org/10.1038/339455a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/339455a0

  • Springer Nature Limited

This article is cited by

Navigation