Skip to main content
Log in

Stimulated activity mediates phase shifts in the hamster circadian clock induced by dark pulses or benzodiazepines

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

A NUMBER of environmental and pharmacological stimuli capable of inducing phase shifts and/or period changes in the circadian clock of mammals have now been identified1–3. Agents that can alter circadian clocks provide a means for investigating the cellular and neural mechanisms responsible for their generation, regulation and entrainment. Two stimuli that have been used to probe the basis of circadian rhythmicity are pulses of darkness on a background of constant light4–8and injections of short-acting benzodiazepines, such as triazolam9–11. Surprisingly, these two very different stimuli have remarkably similar phase-shifting effects on the circadian clock of hamsters. The observation that a short-term increase in locomotor activity occurs when the circadian activity rhythm of hamsters is shifted by dark pulses or triazolam injections5,6,9, coupled with the finding that activity bouts themselves are capable of shifting this rhythm12,13, raises the possibility that dark pulses or triazolam alter the circadian clock by inducing acute hyperactivity. Here we demonstrate that the phase-advancing and phase-delaying effects of dark pulses or triazolam on the circadian activity rhythm can be totally suppressed by immobilization of the animals during treatment. These results indicate that behavioural events mediate the phase-shifting effects of both dark pulses and triazolam on the circadian activity rhythm and question present hypotheses regarding the pathways by which light-dark information and pharmacological agents influence circadian pacemakers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Turek, F. W. Trends pharm. Sci. 8, 212–217 (1987).

    Article  CAS  Google Scholar 

  2. Wirz-Justice, A. Prog. Neurobiol. 29, 219–259 (1987).

    Article  CAS  Google Scholar 

  3. Duncan, W. C. & Wehr, T. A. in A. Rev. Chronopharmacol. 4 (eds Reinberg, A. et al.) 137–170 (Pergamon, Oxford, 1988).

    Google Scholar 

  4. Subbaraj, R. & Chandrashekaran, M. K. J. comp. Physiol. 127, 239–243 (1978).

    Article  Google Scholar 

  5. Boulos, Z. & Rusak, B. J. comp. Physiol. 146, 239–243 (1982).

    Article  Google Scholar 

  6. Ellis, G. B., McKlveen, R. E. & Turek, F. W. Am. J. Physiol. 242, R44–R50 (1982).

    CAS  PubMed  Google Scholar 

  7. Lees, J. G., Hallonquist, J. D. & Mrosovsky, N. J. comp. Physiol. 153, 123–132 (1983).

    Article  Google Scholar 

  8. Harrington, M. E. & Rusak, B. J. biol. Rhythms 1, 309–325 (1986).

    Article  CAS  Google Scholar 

  9. Turek, F. W. & Losee-Olson, S. Nature 321, 167–168 (1986).

    Article  ADS  CAS  Google Scholar 

  10. Turek, F. W. & Van Reeth, O. Trends Neurosci. 11, 535–541 (1988).

    Article  CAS  Google Scholar 

  11. Van Reeth, O. & Turek, F. W. Am. J. Physiol. (in the press).

  12. Mrosovsky, N. J. comp. Physiol. 162, 35–46 (1988).

    Article  CAS  Google Scholar 

  13. Mrosovsky, N. & Salmon, P. A. Nature 330, 372–373 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Albers, H. E. & Ferris, G. F. Neurosci. Lett. 50, 163–168 (1984).

    Article  CAS  Google Scholar 

  15. Pickard, G. J. comp. Neurol. 211, 65–83 (1982).

    Article  CAS  Google Scholar 

  16. Harrington, M., Nance, D. M. & Rusak, B. Brain Res. 410, 275–282 (1987).

    Article  CAS  Google Scholar 

  17. Moore, R. Y. Fedn Proc. 42, 2783–2789 (1983).

    ADS  CAS  Google Scholar 

  18. Card, J. P. & Moore, R. Y. Neuroscience 13, 415–431 (1984).

    Article  CAS  Google Scholar 

  19. Moore, R. Y., Gustafson, E. L. & Card, J. P. Cell Tissue Res. 236, 41–46 (1984).

    Article  CAS  Google Scholar 

  20. Van Reeth, O., Vanderhaeghen, J. J. & Turek, F. W. Brain Res. 444, 333–339 (1988).

    Article  CAS  Google Scholar 

  21. Ralph, M. R. & Menaker, M. Brain Res. 325, 362–365 (1985).

    Article  CAS  Google Scholar 

  22. Ralph, M. R. & Menaker, M. Brain Res. 372, 405–408 (1986).

    Article  CAS  Google Scholar 

  23. Johnson, R. F., Smale, L., Moore, R. Y. & Morin, L. P. Proc. natn. Acad. Sci. U.S.A. 85, 5301–5304 (1988).

    Article  ADS  CAS  Google Scholar 

  24. Moore-Ede, M., Czeisler, C. A. & Richardson, G. S. New Engl. J. Med. 309, 530–536 (1983).

    Article  CAS  Google Scholar 

  25. Circadian Rhythms in Psychiatry (eds Wehr, T. A. & Goodwin, F. K.) (Boxwood, California, 1983).

  26. Van Cauter, E. & Turek, F. W. Perspectives Biol. Med. 29, 510–519 (1986).

    Article  CAS  Google Scholar 

  27. Hallonquist, J. D., Goldberg, M. A. & Brandes, J. S. Can. J. Psychiatry 31, 259–272 (1986).

    Article  CAS  Google Scholar 

  28. Wever, R. A. The Circadian System of Man (Springer, New York, 1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reeth, O., Turek, F. Stimulated activity mediates phase shifts in the hamster circadian clock induced by dark pulses or benzodiazepines. Nature 339, 49–51 (1989). https://doi.org/10.1038/339049a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/339049a0

  • Springer Nature Limited

This article is cited by

Navigation