Skip to main content
Log in

Reassortment of pilin genes in Neisseria gonorrhoeae occurs by two distinct mechanisms

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

PHASE and antigenic variation of pilin expression in Neisseria gonorrhoeae result from recombination events in which variant sequences from one of the silent loci (pilS) are transferred to the expression locus (pilE). Such rearrangements were originally thought to be gene conversions1–3, but findings showing that phase variation is partially inhibited by DNase I4,5, that piliated (P+) cells are highly competent for DNA uptake6 and that gonococci readily undergo autolysis in culture7, led to the suggestion that pilin variation occurs through transformation by exogenous DNA4,8. We have developed a simple method for the selection of non-piliated (P-) cells and have evaluated naturally occurring P+ to P- transitions. Two primary pathways of pilin variation can be distinguished—transformation-mediated recombination, which is influenced by culture conditions and inhibited by DNase I, and intragenomic reciprocal recombination, which is unaffected by DNase I. Furthermore, we demonstrate that both piliated and revertible P- cells are competent for DNA uptake, an essential prerequisite of the first pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haas, R. & Meyer, T. F. Cell 44, 107–115 (1986).

    Article  CAS  PubMed  Google Scholar 

  2. Swanson, J. et al. Cell 47, 267–276 (1986).

    Article  CAS  PubMed  Google Scholar 

  3. Segal, E., Hagblom, P., Seifert, H. S. & So, M. Proc. natn. Acad. Sci. U.S.A. 83, 2177–2181 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Norlander, L., Davies, J., Norquist, A. & Normark, S. J. Bact. 138, 762–769 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Seifert, H. S., Ajioka, R. & So, M. Vaccine 6, 107–109 (1988).

    Article  CAS  PubMed  Google Scholar 

  6. Sparling, P. F. J. Bact. 92, 1364–1370 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hebeler, B. H. & Young, F. E. J. Bact 122, 385–392 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Seifert, H. S., Ajioka, R. S., Marchal, C., Sparling, P. F. & So, M. Nature 336, 392–395.

  9. Haas, R., Schwarz, H. & Meyer, T. F. Proc. natn. Acad. Sci. U.S.A. 84, 9079–9083 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Bergström, S., Robbins, K., Koomey, J. M. & Swanson, J. Proc. natn Acad. Sci. U.S.A. 83, 3890–3894 (1986).

    Article  ADS  Google Scholar 

  11. Segal, E., Billyard, E., So, M., Störzbach, S. & Meyer, T. F. Cell 40, 293–300 (1985).

    Article  CAS  PubMed  Google Scholar 

  12. Koomey, J. M., Gotschlich, E. C., Robbins, K., Bergström, S. & Swanson, J. Genetics 117, 391–398 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibbs, C., Reimann, BY., Schultz, E. et al. Reassortment of pilin genes in Neisseria gonorrhoeae occurs by two distinct mechanisms. Nature 338, 651–652 (1989). https://doi.org/10.1038/338651a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/338651a0

  • Springer Nature Limited

This article is cited by

Navigation