Skip to main content
Log in

Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

NEUROTRANSMISSION effected by GABA (γ-aminobutyric acid) is predominantly mediated by a gated chloride channel intrinsic to the GABAA receptor. This heterooligomeric receptor1 exists in most inhibitory synapses in the vertebrate central nervous system (CNS) and can be regulated by clinically important compounds such as benzodiazepines and barbiturates2. The primary structures of GABAA receptor α- and β-subunits have been deduced from cloned complementary DNAs3,4. Co-expression of these subunits in heterologous systems generates receptors which display much of the pharmacology of their neural counterparts, including potentiation by barbiturates3–5. Conspicuously, however, they lack binding sites for, and consistent electrophysiological responses to, benzodiazepines4,5. We now report the isolation of a cloned cDNA encoding a new GABAA receptor subunit, termed γ2, which shares approximately 40% sequence identity with α-and β-subunits and whose messenger RNA is prominently localized in neuronal subpopulations throughout the CNS. Importantly, coexpression of the γ2 subunit with α1 and β1 subunits produces GABAA receptors displaying high-affinity binding for central benzodiazepine receptor ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stephenson, F. A. Biochem. J. 249, 21–32 (1988).

    Article  CAS  Google Scholar 

  2. Benzodiazepine/GABA Receptors and Chloride Channels: Structural and Functional Properties (eds Olsen, R. W. & Venter, C. J.) (Liss, New York, 1986).

  3. Schofield, P. R. et al. Nature 328, 221–227 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Levitan, E. S. et al. Nature 335, 76–79 (1988).

    Article  ADS  CAS  Google Scholar 

  5. Pritchett et al. Science 242, 1306–1308 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Grenningloh, G. et al. Nature 328, 215–220 (1987).

    Article  ADS  CAS  Google Scholar 

  7. Imoto, K. et al. Nature 335, 645–648 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Hopfield, J. F., Tank, D. W., Greengard, P. & Huganir, R. L. Nature 336, 677–680 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Noda, M. et al. Nature 302, 528–532 (1983).

    Article  ADS  CAS  Google Scholar 

  10. Hunkeler, W. et al. Nature 290, 514–516 (1981).

    Article  ADS  CAS  Google Scholar 

  11. Schofield, P. R. et al. FEBS Lett. (in the press).

  12. Sieghart, W. & Schuster, A. Biochem. Pharmac. 33, 4033–4038 (1984).

    Article  CAS  Google Scholar 

  13. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. I. Pflügers Arch. Ges. Physiol. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  14. Skeritt, J. H. & MacDonald, R. L. Eur. J. Pharmac. 101, 135–141 (1984).

    Article  Google Scholar 

  15. Young, W. S., III & Kuhar, M. J. Pharmac. Ther. 212, 337–346 (1980).

    CAS  Google Scholar 

  16. Richards, J. G. & Möhler, H. Neuropharmacology 23, 233–242 (1984).

    Article  CAS  Google Scholar 

  17. Siegel, R. E. Neuron 1, 579–584 (1988).

    Article  CAS  Google Scholar 

  18. Séquier, J. M. et al. Proc. natn. Acad. Sci. U.S.A. 85, 7815–7819 (1988).

    Article  ADS  Google Scholar 

  19. Braestrup, C. & Nielsen, M. J. J. Neurochem. 37, 333–341 (1981).

    Article  CAS  Google Scholar 

  20. Cooper, S. J., Karkham, T. C. & Estall, L. B. Trends pharmac. Sci. 8, 180–184 (1987).

    Article  CAS  Google Scholar 

  21. Möhler, H. & Okada, T. Science 198, 849–851 (1977).

    Article  ADS  Google Scholar 

  22. Casalotti, S. O., Stephenson, F. A. & Barnard, E. A. J. biol. Chem. 261, 15013–15016 (1986).

    CAS  PubMed  Google Scholar 

  23. Fuchs, K., Möhler, H. & Sieghart, W. Neurosc. Lett. 90, 314–319 (1988).

    Article  CAS  Google Scholar 

  24. von Heijne, G. Nucleic Acids Res. 14, 4683–4690 (1986).

    Article  CAS  Google Scholar 

  25. Sanger, F., Nicklen, S. & Coulson, A. R., Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  26. Vieira, J. & Messing, J. Meth. Enzym. 153, 3–11 (1987).

    Article  CAS  Google Scholar 

  27. Eaton, D. L. et al. Biochemistry 25, 8343–8347 (1986).

    Article  CAS  Google Scholar 

  28. Chen, C. & Okayama, H. Mol. cell. Biol. 7, 2745–2751 (1987).

    Article  CAS  Google Scholar 

  29. Melton, D. A. et al. Nucleic Acids Res. 12, 7035–7056 (1984).

    Article  CAS  Google Scholar 

  30. Shivers, B. D., Schachter, B. S. & Pfaff, D. W. Meth. Enzym. 124, 497–510 (1986).

    Article  CAS  Google Scholar 

  31. Paxinos, G. & Watson, C. The Rat Brain in Stereotoxic Coordinates (Academic, Sidney, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pritchett, D., Sontheimer, H., Shivers, B. et al. Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature 338, 582–585 (1989). https://doi.org/10.1038/338582a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/338582a0

  • Springer Nature Limited

This article is cited by

Navigation