Skip to main content
Log in

Alternative splicing of human dystrophin mRNA generates isoforms at the carboxy terminus

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

DYSTROPHIN is the protein product of the Duchenne/Becker muscular dystrophy locus. It has a relative molecular mass of 427,000 and is encoded by a large RNA transcript processed from more than 65 exons spread over two million base pairs of the human X chromosome1–5. We have used the polymerase chain reaction6 to see whether any of these exons are used alternatively in the different tissues that express dystrophin. As reported for rat dystrophin7, we find that the first exon of the human dystrophin transcript is different in brain and muscle, indicating that dystrophin expression could be differentially regulated in these tissues by usage of distinct promoters. The 3′ end of the dystrophin transcript can be alternatively spliced to create numerous isoforms differing at their carboxy 1 domains; this is the only domain of dystrophin that does not share any similarity with the related cytoskeletal α-actinins3. These alternative transcripts yield dystrophin molecules which may interact with different proteins of the tissues expressing dystrophin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoffman, E. P., Brown, R. H. & Kunkel, L. M. Cell 51, 919–928 (1987).

    Article  CAS  Google Scholar 

  2. Koenig, M. et al. Cell 50, 509–517 (1987).

    Article  CAS  Google Scholar 

  3. Koenig, M., Monaco, A. P. & Kunkel, L. M. Cell 53, 219–228 (1988).

    Article  CAS  Google Scholar 

  4. van Ommen, G. J. B. et al. Genomics 1, 329–336 (1987).

    Article  CAS  Google Scholar 

  5. Burmeister, M. et al. Genomics 2, 189–202 (1988).

    Article  MathSciNet  CAS  Google Scholar 

  6. Saiki, R. K. et al. Science 239, 487–491 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Nudel, U. et al. Nature 337, 76–78 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Hoffman, E. P., Monaco, A. P., Feener, C. C. & Kunkel, L. M. Science 238, 347–350 (1987).

    Article  ADS  CAS  Google Scholar 

  9. Chamberlain, J. S. et al. Science 239, 1416–1418 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Hoffman, E. P., Hudecki, M. S., Rosenberg, P. A., Pollina, C. M. & Kunkel, L. M. Neuron 1, 411–420 (1988).

    Article  CAS  Google Scholar 

  11. Chelly, J., Kaplan, J. C., Maire, P., Gautron, S. & Kahn, A. Nature 333, 858–860 (1988).

    Article  ADS  CAS  Google Scholar 

  12. Hammond, R. G. Jr, Cell 51, 1 (1987).

    Article  Google Scholar 

  13. Davison, M. D. & Critchley, D. R., Cell 52, 159–160 (1988).

    Article  CAS  Google Scholar 

  14. Lemaire, C., Heilig, R. & Mandel, J. L. EMBO J. 7, 4157–4162 (1988).

    Article  CAS  Google Scholar 

  15. Chirgwin, J. M., Przybla, A. E., MacDonald, R. J. & Rutter, W. J. Biochemistry 18, 5294 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feener, C., Koenig, M. & Kunkel, L. Alternative splicing of human dystrophin mRNA generates isoforms at the carboxy terminus. Nature 338, 509–511 (1989). https://doi.org/10.1038/338509a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/338509a0

  • Springer Nature Limited

This article is cited by

Navigation