Skip to main content
Log in

Carbonate melt from the mantle in the volcanoes of south-east Zambia

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

RECENTLY Wallace and Green1 reported the experimental formation of a dolomitic (Ca–Mg) carbonate melt in equilibrium with peridotite minerals in the range 21–30 kbar and 930–1,080 °C. These results confirm earlier deductions that, in the presence of CO2, initial melts from the mantle would be carbonatitic2,3, and extend the conditions of carbonate melt generation. The dolomitic melt composition also endorses earlier observations of quench dolomite after experimental melting of a natural garnet peridotite4. Dolomitic ashes, erupted from volcanoes near the confluence of the Rufunsa and Luangwa rivers in south-east Zambia5,6, offer the nearest analogue to the experimental melt yet reported. Quenched melt droplets in the volcanics now reveal new evidence indicating a mantle source for this natural dolomite liquid. Specifically, I present here results which show that the liquid contains magnesio-chromite crystals (52% Cr2O3) that match those in mantle peri-dotites, kimberlites and lamproites. In contrast with the experimental liquid, the natural dolomitic melt has a low iron content,and high manganese and strontium, with alkalis virtually absent. High potassium activity is recorded, however, in the intensely metasomatized rocks around the main volcanoes. These differences suggest that the mantle source region chemistry differs from the high-sodium source envisaged in the experiments. The Zambian carbonatites thus reveal new aspects of carbonate melt and fluid activity in the Earth's mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wallace, E. W. & Green, D. H. Nature 335, 343–346 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Wyllie, P. J. & Huang, W. L. Nature 257, 297–299 (1975).

    Article  ADS  CAS  Google Scholar 

  3. Eggler, D. H. Geology 4, 787–788 (1976).

    Article  ADS  CAS  Google Scholar 

  4. Wendlandt R. F. & Mysen, B. O. Am. Miner. 65, 37–44 (1980).

    CAS  Google Scholar 

  5. Bailey, D. K. Bull. 5. Geol. Surv. Northern Rhodesia 92 (1960).

  6. Bailey, D. K. in Carbonatites (eds Tuttle, O. F. & Gittings, J. 127–154 (Wiley, New York, 1966).

    Google Scholar 

  7. Woolley, A. R. & Garson, M. S. in African Magmatism and Tectonics (eds Clifford, T. N. & Gass, I. G.) 237–262 (Oliver & Boyd, Edinburgh, 1970).

    Google Scholar 

  8. Tuttle, O. F. & Gittins, J. (eds) Carbonatites (Wiley, New York, 1966).

  9. Bailey, D. K. Geol. Mag. 98, 277–284 (1961).

    Article  ADS  Google Scholar 

  10. Bailey, D. K. J. geol. Soc. Lond. 133, 103–106 (1977).

    Article  Google Scholar 

  11. McGetchin, T. R. & Ullrich, G. W. J. geophys. Res. 78, 1833–1853 (1973).

    Article  ADS  Google Scholar 

  12. Mercier, J.-C. C. in The Mantle Sample. Proc. 2nd Kimberlite Conf. 197–212 (American Geophysical Union, 1979).

    Google Scholar 

  13. McCallister, R. H., Meyer, H. O. A. & Aragon, R. in The Mantle Sample, Proc. 2nd Kimberlite Conf. 244–248 (American Geophysical Union, 1979).

    Google Scholar 

  14. McGetchin, T. R., Nikhanj, Y. S. & Chodos, A. A. J. geophys. Res. 78, 1854–1869 (1973).

    Article  ADS  Google Scholar 

  15. Gittins, J. Nature 335, 295–296 (1988).

    Article  ADS  Google Scholar 

  16. Gold, D. P. Miner. Soc. India, IMA Volume 83–91 (1966).

  17. Le Bas, M. J. in Alkaline Igneous Rocks (eds Fitton, J. G. & Upton, B. G. J.) 53–83 (Blackwell, Oxford, 1987).

    Google Scholar 

  18. Smith, J. V. & Dawson, J. B. Phys. Chem. Earth 9 (eds Ahrens, L. H., Dawson, J. B., Duncan, A. R. & Erlank, A. J.) 309–322 (Pergamon, Oxford, 1975).

    Book  Google Scholar 

  19. Haggerty, S. E. in The Mantle Sample, Proc. 2nd Kimberlite Conf. 183–196 (American Geophysical Union, 1979).

    Google Scholar 

  20. Haggerty, S. E. Phys. Chem. Earth 9 (eds Ahrens, L. H., Dawson, J. B., Duncan, A. R. & Erlank, A. J.) 293–308 (Pergamon, Oxford, 1975).

    Google Scholar 

  21. Mitchell, R. H. Trans. geol. Soc. S. Afr. 88, 411–437 (1985).

    Google Scholar 

  22. Bailey, D. K. J. geol. Soc. Lond. 145, 103–105 (1988).

    Google Scholar 

  23. Wendlandt, R. F. & Eggler, D. H. Am. J. Sci. 280, 421–458 (1980).

    Article  ADS  CAS  Google Scholar 

  24. Olafsson, M. & Eggler, D. H. Earth planet Sci. Lett 64, 305–315 (1983).

    Article  ADS  CAS  Google Scholar 

  25. Navon, O., Hutcheon, I. D., Rossman, G. R. & Wasserburg, G. J. Nature 335, 784–789 (1988).

    Article  ADS  CAS  Google Scholar 

  26. Griffin, W. L. & Kresten, P. in Mantle Xenoliths (ed. Nixon, P.H.) 101–106 (Wiley, New York, 1987).

    Google Scholar 

  27. Nixon, P. H. in Mantle Xenoliths (ed. Nixon, P. H. ) 232 (Wiley, New York, 1987).

    Google Scholar 

  28. Nixon, P. H. in Mantle Xenoliths (ed. Nixon, P. H.) 187–193 (Wiley, New York, 1987).

    Google Scholar 

  29. International Geological Map of Africa (CGMW and UNESCO, 1986).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bailey, D. Carbonate melt from the mantle in the volcanoes of south-east Zambia. Nature 338, 415–418 (1989). https://doi.org/10.1038/338415a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/338415a0

  • Springer Nature Limited

This article is cited by

Navigation