Skip to main content
Log in

A diacylglycerol analogue reduces neuronal calcium currents independently of protein kinase C activation

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

DIACYLGLYCEROL analogues (for example 1,2-oleoylacetyl-glycerol, OAG) and phorbol esters are activators of protein kinase C, and have been widely used to study the function of this enzyme in both intact cells and cell-free preparations1,2. Electrophysiological studies have shown that these activators can either depress3–6 or increase Ca2+ currents7–9, or decrease K+ currents10,11 when applied outside the cell. It has been assumed that these effects are mediated by protein kinase C activation. Here we report that micromolar levels of OAG and phorbol esters depress Ca2+ currents in chick sensory neurons independently of their effect as activators of protein kinase C. The depression of the Ca2+ current is rapid and is unaffected by intracellular application of the protein kinase C inhibitors staurosporin, sphingosine and H-712. Furthermore, the activators were ineffective when applied intracellularly, indicating that their site of action is on the outside of the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nishizuka, Y. Science 225, 1365–1370 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Nishizuka, Y. Nature 334, 661–665 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Rane, S. & Dunlap, K. Proc. natn. Acad. Sci. U.S.A. 83, 184–188 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Lewis, D. & Weight, F. Neuroendosci. 47, 169–175 (1988).

    Article  CAS  Google Scholar 

  5. Marchetti, C. & Brown, A. Am. J. Physiol. 23, C206–C210 (1988).

    Article  Google Scholar 

  6. Lacerda, A., Rampe, D. & Brown, A. M. Nature 335, 249–251 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. DeRiemer, S., Strong, J., Albert, K., Greengard, P. & Kaczmarek, L. Nature 313, 313–316 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Leonard, J. P., Nargeot, J., Snutch, T. P., Davidson, N. & Lester, H. A. J. Neurosci. 7, 875–881 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sigel, E. & Baur, R. Proc. natn. Acad. Sci. U.S.A. 85, 6192–6196 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Baraban, J., Synder, S. & Alger, B. Proc. natn. Acad. Sci. U.S.A. 82, 2538–2542 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Malenka, R., Madison, D., Andrade, R. & Nicoll, R., J. Neurosci. 6, 475–480 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hidaka, H. & Hagiwara, M. Trends Pharmacol. Sci. 8, 162–164 (1987).

    Article  CAS  Google Scholar 

  13. Swandulla, D. & Armstrong, C. M. J. gen. Physiol. 92, 197–218 (1988).

    Article  CAS  PubMed  Google Scholar 

  14. Hamill, O., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. Pflügers Arch. ges. Physiol. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  15. Kaibuchi, K. et al. J. biol. Chem. 258, 6701–6704 (1983).

    CAS  PubMed  Google Scholar 

  16. Carbone, E. & Lux, H. D. Nature 310, 501–503 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Nowycky, M., Fox, A. & Tsien, R. Nature 316, 440–443 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Carbone, E. & Lux, H. D. J. Physiol. 386, 547–570 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fox, A., Nowycky, M. & Tsien, R. J. Physiol. 394, 149–172 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ganong, B., Loomis, C., Hannun, Y. & Bell, R. Proc. nantn. Acad. Sci. U.S.A. 83, 1184–1188 (1986).

    Article  ADS  CAS  Google Scholar 

  21. Blumberg, P. M. et al. Biochem. Pharmac. 33, 933–940 (1984).

    Article  CAS  Google Scholar 

  22. Davis, N., Lux, H. D. & Morad, M. J. Physiol. 400, 159–187 (1988).

    Article  Google Scholar 

  23. Tamaoki, T., Nomoto, H., Takahashi, I., Kato, Y., Morimoto, M. & Tomita, F. Biochem. biophys. Res. Commun. 135, 397–402 (1986).

    Article  CAS  PubMed  Google Scholar 

  24. Hannun, Y., Loomis, C., Merrill, A. & Bell, R. J. biol. Chem. 261, 12604–12609 (1986).

    CAS  PubMed  Google Scholar 

  25. Hannun, Y. & Bell, R. in Cell Calcium and the Control of Membrane Transport (eds Mandel, L. & Eaton, D.) 230 (Rockefeller University Press, New York, 1987).

    Google Scholar 

  26. Hidaka, H., Inagaki, M., Kawamoto, S. & Sasaki, Y. Biochemistry 23, 5036–5041 (1984).

    Article  CAS  PubMed  Google Scholar 

  27. Forscher, P. & Oxford, G. J. gen. Physiol. 85, 743–763 (1985).

    Article  CAS  PubMed  Google Scholar 

  28. Byerly, L. & Yazejian, B. J. Physiol. 370, 631–650 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Reuter, H. Nature 301, 569–574 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Armstrong, D. & Eckert, R. Proc. natn. Acad. Sci U.S.A. 84, 2518–2522 (1987).

    Article  ADS  CAS  Google Scholar 

  31. Chad, J. & Eckert, R., J. Physiol. 378, 31–51 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hartzell, C. & Fischmeister, R. Molec. Pharmac. 32, 639–645 (1987).

    CAS  Google Scholar 

  33. Coombs, J. & Thompson, S. J. Neurosci. 7, 443–452 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hoshi, T., Garber, S. & Aldrich, R. Science 240, 1652–1655 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Watanabe, K. & Gola, M. Neurosci. Lett. 78, 211–216 (1987).

    Article  CAS  PubMed  Google Scholar 

  36. Krause, D., Lee, S. & Deutsch, C., Pflügers Arch. ges. Physiol. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hockberger, P., Toselli, M., Swandulla, D. et al. A diacylglycerol analogue reduces neuronal calcium currents independently of protein kinase C activation. Nature 338, 340–342 (1989). https://doi.org/10.1038/338340a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/338340a0

  • Springer Nature Limited

This article is cited by

Navigation