Skip to main content
Log in

The critical slip distance for seismic faulting

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Experimentally based friction laws1,2 have been found to predict virtually the entire range of observed behaviour of natural faults3,4. These laws contain a critical slip distance, L, which plays a key role in determining the degree of fault instability, the size of the zone of earthquake nucleation, the frictional breakdown width, and the proportion of pre- and post-seismic slip to co-seismic slip. In laboratory measurements L is found to be about 10−5m, but modelling results show that it must be about 10−2m if natural earthquake behaviour is to be simulated. The discovery that fault surfaces are fractal over the scale range 10−5–105 (refs 5,6), even for faults with large net slip, has confused the problem of scaling this parameter from laboratory experiments to natural faults, because fractal surfaces have no characteristic length. Here I show that geometrically unmated fractal surfaces, when in contact under a normal load, develop a characteristic length in their contact because long-wavelength apertures close under load whereas short-wavelength apertures may remain open. This critical distance may be identified with L, and calculations based on fault topography data show that at seismogenic depths it will be in the range anticipated from the earthquake modelling studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dieterich, J. H. J. geophys. Res. 84, 2161–2168 (1979).

    Article  ADS  Google Scholar 

  2. Ruina, A. L. J. geophys. Res. 88, 10359–10370 (1983).

    Article  ADS  Google Scholar 

  3. Tse, S. T. & Rice, J. R. J. geophys. Res. 91, 9452–9472 (1986).

    Article  ADS  Google Scholar 

  4. Stuart, W. D. PAGEOPH 126, 619–641 (1988).

    Article  Google Scholar 

  5. Brown, S. R. & Scholz, C. H. J. geophys. Res. 90, 12575–12582 (1985).

    Article  ADS  Google Scholar 

  6. Scholz, C. H. & Aviles, C. A. in Earthquake Source Mechanics (eds Das, S., Boatwright, J. & Scholz, C.) 147–155, (Am. Geophys. Un. Washington, DC, 1986).

    Google Scholar 

  7. Rabinowicz, E. J. appl. Phys. 22, 1373–1379 (1951); J. appl. Phys. 27, 131–135 (1956); Proc. phys. Soc. Lond. 71, 668–675 (1958).

    Article  ADS  Google Scholar 

  8. Okubo, P. G. & Dieterich, J. H. J. geophys. Res. 89, 5817–5827 (1984).

    Article  ADS  Google Scholar 

  9. Walsh, J. B. J. geophys. Res. 70, 381–389 (1965).

    Article  ADS  Google Scholar 

  10. Brown, S. R. & Scholz, C. H. J. geophys. Res. 90, 5531–5545 (1985).

    Article  ADS  Google Scholar 

  11. Mandelbrot, B. B. The Fractal Geometry of Nature 236 (Freeman, San Francisco, 1983).

    Google Scholar 

  12. Power, W. L., Tullis, T. E. & Weeks, J. D. J. geophys. Res. 93 (in the press).

  13. Marone, C. & Scholz, C. H. Geophys. Res. Lett. 15, 621–624 (1988).

    Article  ADS  Google Scholar 

  14. Dieterich, J. H. in Earthquarke Source Mechanics (eds Das, S., Boatwright, J. & Scholz, C.) 37–47 (Am. Geophys. Un. Washington, DC, 1986).

    Google Scholar 

  15. Das, S. & Scholz, C. H. Nature 305, 621–623 (1983).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholz, C. The critical slip distance for seismic faulting. Nature 336, 761–763 (1988). https://doi.org/10.1038/336761a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/336761a0

  • Springer Nature Limited

This article is cited by

Navigation