Skip to main content

Advertisement

Log in

Drosophila homoeotic genes encode transcriptional activators similar to mammalian OTF-2

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

An Erratum to this article was published on 19 January 1989

Abstract

Homoeotic genes in Drosophila melanogaster are active in spatially restricted metameric domains and control the morphogenesis of segment-specific features such as legs or wings within these domains1. They exert their function, according to the 'selector gene' hypothesis2, by regulating the expression of subordinate genes. Homoeotic genes also control their own expression3 and the expression of each other3–5. The proteins encoded by these genes contain a domain, called a homoeodomain, that is strongly conserved, and that shows homologies to proteins that bind DNA and regulate transcription6,7. Homoeoproteins have been shown to bind specific DNA sequences8–10. We show here that the Drosophila homoeotic genes Ultrabithorax (Ubx) and Abdominal-B (Abd-B) code for proteins that are capable of activating transcription of reporter genes linked to specific cis-regulatory target sequences in transfected mammalian cells. Their activity, as well as their target specificity, is similar to that of a mammalian lymphoid-specific octamer transcription factor, OTF-2, which was recently found to contain a homoeodomain11.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akam, M. Development 101, 1–22 (1987).

    CAS  PubMed  Google Scholar 

  2. Garcia-Bellido, A. in Cell Patterning, CIBA Foundation Symposium Vol. 29 (ed. Brenner, S.) 161–182 (New York Associated Scientific, 1975).

    Google Scholar 

  3. Bienz, M. & Tremml, G. Nature 333, 576–578 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Hafen, E., Levine, M. & Gehring, W. Nature 307, 287–289 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Struhl, G. & White, R. A. H. Cell 43, 507–519 (1985).

    Article  CAS  PubMed  Google Scholar 

  6. Shepherd, J. C. W., McGinnis, W., Carrasco, A. E., DeRobertis, E. M. & Gehring, W. Nature 310, 70–71 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Laughon, A. & Scott, M. P. Nature 310, 25–31 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Desplan, C., Theis, J. & O'Farrell, P. H. Nature 318, 630–635 (1985).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Desplan, C., Theis, J. & O'Farrell, P. H. Cell 55, 1081–1090 (1988).

    Article  Google Scholar 

  10. Hoey, T. & Levine, M. Nature 332, 858–861 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Müller, M. M., Ruppert, S., Schaffner, W. & Matthias, P. Nature 336, 544–551 (1988).

    Article  ADS  PubMed  Google Scholar 

  12. Ptashne, M. Nature 335, 683–689 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. O'Connor, M. B., Binari, R., Perkins, L. A. & Bender, W. EMBO J. 7, 435–445 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. DeLorenzi, M. et al. EMBO J. 7, 3223–3231 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Severne, Y., Wieland, S., Schaffner, W. & Rusconi, S. EMBO J. 7, 2503–2508 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Biggin, M. D. & Tjian, R. Cell 53, 699–711 (1988).

    Article  CAS  PubMed  Google Scholar 

  17. Bienz, M. et al. Cell 53, 5567–5576 (1988).

    Article  Google Scholar 

  18. Westin, G., Gerster, T., Müller, M. M., Schaffner, G. & Schaffner, W. Nucleic Acids Res. 15, 6787–6798 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Höller, M., Westin, G., Jiricny, J. & Schaffner, W. Genes Dev. 2, 1127–1135 (1988).

    Article  PubMed  Google Scholar 

  20. Green, M. R., Treisman, R. & Maniatis, T. Cell 35, 137–148 (1983).

    Article  CAS  PubMed  Google Scholar 

  21. Staden, R. Nucleic Acids Res. 10, 2951–2961 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fletcher, C., Heintz, N. & Roeder, R. G. Cell 51, 773–781 (1987).

    Article  CAS  PubMed  Google Scholar 

  23. Otting, G. et al. EMBO J. (in the press).

  24. Casanova, J., Sanchez-Herrero, E. & Morata, G. Cell 47, 627–636 (1986).

    Article  CAS  PubMed  Google Scholar 

  25. Casanova, J. & White, R. A. H. Development 101, 117–122 (1987).

    CAS  PubMed  Google Scholar 

  26. Shore, D. & Nasmyth, K. Cell 51, 721–732 (1987).

    Article  CAS  PubMed  Google Scholar 

  27. Sakai, D. D. et al. Genes Dev. 2, 1144–1154 (1988).

    Article  CAS  PubMed  Google Scholar 

  28. Ma, J. & Ptashne, M. Cell 50, 137–142 (1987).

    Article  CAS  PubMed  Google Scholar 

  29. Weinzierl, R., Axton, J. M., Ghysen, A. & Akam, M. Genes Dev. 1, 386–397 (1987).

    Article  CAS  Google Scholar 

  30. Jack, T., Regulski, M. & McGinnis, W. Genes Dev. 2, 635–651 (1988).

    Article  CAS  Google Scholar 

  31. Saari, G. & Bienz, M. EMBO J. 6, 1775–1779 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thali, M., Müller, M., DeLorenzi, M. et al. Drosophila homoeotic genes encode transcriptional activators similar to mammalian OTF-2. Nature 336, 598–601 (1988). https://doi.org/10.1038/336598a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/336598a0

  • Springer Nature Limited

This article is cited by

Navigation