Skip to main content
Log in

Removal of poly(A) and consequent degradation of c-fos mRNA facilitated by 3′ AU-rich sequences

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The c-fos proto-oncogene provides a good system to study the processes underlying messenger RNA degradation. After growth factor stimulation of susceptible cells, the c-fos transcription rate transiently increases from a low basal level by as much as 50-fold1, producing a large amount of exceedingly unstable c-fos mRNA that is rapidly degraded1–3. Here, we investigate the c-fos mRNA degradation process, and find that: (1) ongoing translation of the c-fos mRNA itself is required for its degradation; (2) after synthesis, the mRNA poly(A) tail is rapidly removed, in a translation-dependent manner, leading to accumulation of apparently de-adenylated RNA; (3) deletion or replacement of an AU-rich sequence at the mRNA 3′ end significantly stabilizes the mRNA; (4) deletion of the 3′ AU-rich sequences dramatically slows the poly(A) shortening rate. These results suggest that the 3′ AU-rich sequences act to destabilize the mRNA by directing rapid removal of the mRNA poly(A) tract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greenberg, M. E. & Ziff, E. B. Nature 311, 433–438 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Kruijer, W., Cooper, J. A., Hunter, T. & Verma, I. M. Nature 312, 711–716 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Muller, R., Bravo, R., Burckhardt, J. & Curran, T. Nature 312, 716–720 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Treisman, R. H. Cell 42, 889–902 (1985).

    Article  CAS  Google Scholar 

  5. Mitchell, R. L., Henning-Chubb, C., Huberman, E. & Verma, I. M. Cell 45, 567–574 (1986).

    Article  Google Scholar 

  6. Brewer, G. & Ross, J. Molec. cell. Biol. 8, 1697–1708 (1988).

    Article  CAS  Google Scholar 

  7. Fort, P. et al. Nucleic. Acids Res. 15, 5567–5667 (1987).

    Article  Google Scholar 

  8. Rahmsdorf, H-J. et al. Nucleic. Acids Res. 15, 1643–1649 (1987).

    Article  CAS  Google Scholar 

  9. Miller, A. D., Curran, T. & Verma, I. M. Cell 36, 51–60 (1984).

    Article  CAS  Google Scholar 

  10. Meijlink, F. & Verma, I. M. Proc. natn. Acad. Sci. U.S.A. 82, 4987–4991 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Shaw, G. & Kamen, R. I. Cell 46, 659–667 (1986).

    Article  CAS  Google Scholar 

  12. Graves, R. F., Pandey, N. B., Chodchoy, N. & Marzluff, W. F. Cell 48, 615–626 (1987).

    Article  CAS  Google Scholar 

  13. Sussman, M. Nature 225, 1245–1246 (1970).

    Article  ADS  CAS  Google Scholar 

  14. Sheiness, D., Puckett, L. & Darnell, J. E. Proc. natn. Acad. Sci. U.S.A. 72, 1077–1081 (1975).

    Article  ADS  CAS  Google Scholar 

  15. Sheiness, D. & Darnell, J. E. Nature 241, 265–268 (1973).

    CAS  Google Scholar 

  16. Merkel, C. G., Kwan, S-P. & Lingrel, J. B. J. biol. Chem. 250, 3725–3728 (1975).

    CAS  PubMed  Google Scholar 

  17. Medford, R. M., Wydro, R. M., Nguyen, H. T. & Nadal-Ginard, B. Proc. natn. Acad. Sci. U.S.A. 77, 5749–5753 (1980).

    Article  ADS  CAS  Google Scholar 

  18. Mercer, J. F. B. & Wake, S. A. Nucleic Acids Res. 13, 7929–7943 (1985).

    Article  CAS  Google Scholar 

  19. Wilson, M. C., Sawicki, S. G., White, P. A. & Darnell, J. E. J. molec. Biol. 126, 23–36 (1978).

    Article  CAS  Google Scholar 

  20. Zeevi, M., Nevins, J. & Darnell, J. E. Molec. cell. Biol. 7, 517–525 (1982).

    Article  Google Scholar 

  21. Paek, I. & Axel, R. Molec. cell. Biol. 7, 1496–1507 (1987).

    Article  CAS  Google Scholar 

  22. Deshpande, A. K., Chatterjee, B. & Roy, A. K. J. biol. Chem. 254, 8937–8942 (1979).

    CAS  PubMed  Google Scholar 

  23. Muschel, R., Khoury, G. & Reid, L. M. Molec. cell. Biol. 6, 337–341 (1986).

    Article  CAS  Google Scholar 

  24. Marbaix, G. et al. Proc. natn. Acad. Sci. U.S.A. 72, 3065–3067 (1975).

    Article  ADS  CAS  Google Scholar 

  25. Huez, G. et al. Eur. J. Biochem. 59, 589–592 (1975).

    Article  CAS  Google Scholar 

  26. Dani, C. et al. Proc. natn. Acad. Sci. U.S.A. 81, 7046–7050 (1984).

    Article  ADS  CAS  Google Scholar 

  27. Lau, L. F. & Nathans, D. Proc. natn. Acad. Sci. U.S.A. 84, 1182–1186 (1987).

    Article  ADS  CAS  Google Scholar 

  28. Almendral, J. M. et al. Molec. cell. Biol. 8, 2140–2148 (1988).

    Article  CAS  Google Scholar 

  29. Van Beveren, C., van Straaten, F., Curran, T., Muller, R. & Verma, I. M. Cell 32, 1241–1255 (1983).

    Article  CAS  Google Scholar 

  30. Van Straaten, F., van Beveren, C., Curran, T. & Verma, I. M. Proc. natn. Acad. Sci. U.S.A. 80, 3183–3187 (1983).

    Article  ADS  CAS  Google Scholar 

  31. Southern, P. & Berg, P. J. molec. appl. Genet. 1, 327–337 (1982).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, T., Treisman, R. Removal of poly(A) and consequent degradation of c-fos mRNA facilitated by 3′ AU-rich sequences. Nature 336, 396–399 (1988). https://doi.org/10.1038/336396a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/336396a0

  • Springer Nature Limited

This article is cited by

Navigation