Skip to main content
Log in

Noradrenaline contracts arteries by activating voltage-dependent calcium channels

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Noradrenaline (NA) regulates arterial smooth muscle tone and hence blood vessel diameter and blood flow1. NA apparently increases tone by causing a calcium influx through the cell membrane1–3. Two calcium influx pathways have been proposed: voltage-activated calcium channels and NA-activated calcium-permeable channels that are voltage-insensitive1. Although voltage-activated calcium channels have been identified in arterial smooth muscle4, 5, voltage-insensitive calcium channels activated by NA have not. We show here that NA contractions of rabbit mesenteric arteries increase with depolarization. The increase parallels the elevation of open-state probability (P ) of single, voltage-dependent calcium channels. The action of noradrenaline can be explained by NA-activating voltage-dependent calcium channels, rather than by opening a second type of channel. We show directly that N A increases the open-state probability of single calcium channels. Thus, in the presence of NA, calcium entry through voltage-dependent calcium channels can regulate smooth muscle tone at physiological membrane potentials. These results may have relevance to pathophysiological conditions such as hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bulbring, E. & Tomita, T. Pharmacol. Rev. 39, 49–96 (1987).

    CAS  PubMed  Google Scholar 

  2. Bolton, T. B. Physiol. Rev. 59, 606–718 (1979).

    Article  CAS  Google Scholar 

  3. Janis, R. A., Silver, S. C. & Triggle, D. J. Adv. Drug Res. 16, 311–536 (1987).

    Google Scholar 

  4. Worley III, J. F., Deitmer, J. & Nelson, M. T. Proc. natn. Acad. Sci. U.S.A. 83, 5746–5750 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Benham, C. D., Hess, P. & Tsien, R. W. Circulation Res. 61, 10–16 (1987).

    Google Scholar 

  6. Bolton, T. B., Lang, R. J. & Takewaki, T. J. Physiol., Lond. 351, 549–572 (1984).

    Article  CAS  Google Scholar 

  7. Mulvany, M. J., Nilsson, H. & Flatman, J. A. J. Physiol, Lond. 332, 363–373 (1982).

    Article  CAS  Google Scholar 

  8. Franckowiak, G., Bechem, M., Schramm, M. & Thomas, G. Eur. J. Pharmac. 114, 223–226 (1985).

    Article  CAS  Google Scholar 

  9. Standen, N. B., Worley, J. F. & Nelson, M. T. Biophys. J. 53, 231a (1988).

    Google Scholar 

  10. Benham, C. D. & Tsien, R. W. J. Physiol., Lond. 404, 767–784 (1988).

    Article  CAS  Google Scholar 

  11. Fleming, W. W. A. Rev. Pharmac. Tax. 20, 129–149 (1980).

    Article  CAS  Google Scholar 

  12. Neild, T. O. J. Physiol., Lond. 386, 19–30 (1987).

    Article  CAS  Google Scholar 

  13. Yanagisawa, M. et al. Nature 332, 411–415 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Han, C., Abel, P. W. & Minneman, K. P. Nature 329, 333–335 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Hashimoto, T., Hirata, M., Itoh, T., Kanmura, Y. & Kuriyama, H. J. Physiol., Lond. 370, 605–618 (1986).

    Article  CAS  Google Scholar 

  16. Somlyo, A. V., Bond, M., Somlyo, A. P. & Scarpa, A. Proc. natn. Acad. Sci. U.S.A. 82, 5231–5235 (1985).

    Article  ADS  CAS  Google Scholar 

  17. Fish, D., Sperti, G., Colucci, W. & Clapham, D. Circulation Res. 62, 1049–1054 (1988).

    Article  CAS  Google Scholar 

  18. Nastainczyk, W. et al. Eur. J. Biochem. 169, 137–142 (1987).

    Article  CAS  Google Scholar 

  19. Bohm, R. O., van Baak, M. A., van Hooff, M. E., Mooy, J. & Rahn, K. H. J. Hypertension 5, 655–662 (1987).

    Article  CAS  Google Scholar 

  20. Hamlyn, J. M. et al. Nature 300, 650–652 (1982).

    Article  ADS  CAS  Google Scholar 

  21. Nelson, M. T., French, R. J. & Krueger, B. K. Nature 308, 77–80 (1984).

    Article  ADS  CAS  Google Scholar 

  22. Hess, P., Lansman, J. B. & Tsien, R. W. J. gen. Physiol. 88, 293–320 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, M., Standen, N., Brayden, J. et al. Noradrenaline contracts arteries by activating voltage-dependent calcium channels. Nature 336, 382–385 (1988). https://doi.org/10.1038/336382a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/336382a0

  • Springer Nature Limited

This article is cited by

Navigation