Skip to main content
Log in

Contaminated aquifers are a forgotten component of the global N2O budget

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

One of the chemical components contributing to the destruction of the ozone layer in the upper atmosphere consists of the nitrogen oxides formed from N2O (ref. 1). Prompted by the prevailing idea that the ocean is not a major source of N2O or a sink for N2O, estimates have been made of global fluxes from continental ecosystems2. Although most land areas are underlain by groundwater3, this medium has never been considered in global budgeting of N2O. A large number of aquifers around the world are contaminated by nitrogen compounds, and processes of nitrification and denitrification are reported to be operative in this environment3. These processes lead to the production of N2O (refs 4 and 5). Here we report that the concentration of N2O in phreatic aerobic aquifers contaminated by anthropogenic activities (disposal of human or animal waste, cultivation and fertilization) are up to three orders of magnitude higher than the concentration expected as a result of equilibrium with the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cicerone, R. J. Science 237, 35–42 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Banin, A., Lawless, J. G. & Whitten, R. C. Adv. Space Res. 4, 207–216 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Freeze, R. A. & Cherry, J. A. Groundwater (Prentice-Hall, Englewood Cliffs, 1979).

    Google Scholar 

  4. Delwiche, C. C. in Stratospheric Ozone and Man (eds Bower, F. A. & Ward, R. B.) 65–77 (CRC, Boca Raton, Florida, 1982).

    Google Scholar 

  5. Burdof, J. R. & Bremner, J. M. Soil Biol. Biochem. 7, 389–394 (1975).

    Article  Google Scholar 

  6. Krajenbrink, G. J. W., Ronen, D., Duijvenbooden, van W., Magaritz, M. & Wever, D. J. Hydrol. 98, 83–102 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Ronen, D., Kanfi, Y. & Magaritz, M. in Developments in Ecology and Environmental Quality (ed. Shuval, H. I.) 301–310 (Balaban International Science Services, Rehovot/Philadelphia, 1983).

    Google Scholar 

  8. Ronen, D. & Magaritz, M. J. Hydrol. 80, 311–323 (1985).

    Article  ADS  CAS  Google Scholar 

  9. Ronen, D., Magartiz, M. & Levy, L. Water Res. 20, 311–315 (1986).

    Article  CAS  Google Scholar 

  10. Almon, E. thesis, Weismann Inst. Sci. (1986).

  11. Moiser, A. R. & Mack, L. Soil Sci. Soc. Am. J. 44, 1121–1123 (1980).

    Article  ADS  Google Scholar 

  12. Cohen, Y. Nature 272, 235–237 (1978).

    Article  ADS  CAS  Google Scholar 

  13. Ronen, D., Magaritz, M., Almon, E. & Amiel, A. J. Water Resources Res. 23, 1554–1560 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Mathew, K., Newman, P. W. G. & Ho, G. E. in Groundwater Recharge with Secondary Sewage Effluents (Tech. Paper No. 71, Australian Government Publishing Service, Canberra, 1982).

    Google Scholar 

  15. Gvirtzman, H., Ronen, D. & Magaritz, M. J. Hydrol. 87, 267–283 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Cohen, Y. & Gordon, L. I. J. geophys. Res. 84, 347–353 (1979).

    Article  ADS  CAS  Google Scholar 

  17. Elkins, J. W., Wofsy, S. C., McElroy, M. B., Kolb, C. E. & Kaplan, W. A. Nature 275, 602–606 (1978).

    Article  ADS  CAS  Google Scholar 

  18. Lipschultz, F. et al. Nature 294, 641–643 (1981).

    Article  ADS  CAS  Google Scholar 

  19. Weiss, R. F. & Price, B. A. Marine Chem. 8, 347–359 (1980).

    Article  CAS  Google Scholar 

  20. Weiss, R. F. J. geophys. Res. 86, 7185–7195 (1981).

    Article  ADS  CAS  Google Scholar 

  21. Hao, W. M., Wofsy, S. C., McElroy, M. B., Beer, J. M. & Togan, M. A. J. geophys. Res. 92, 3098–3104 (1987).

    Article  ADS  CAS  Google Scholar 

  22. Bowden, W. B. & Bormann, F. H. Science 233, 867–869 (1986).

    Article  ADS  CAS  Google Scholar 

  23. Butler, J. H., Jones, R. D., Garber, J. H. & Gordon, L. I. Geochim. cosmochim. Acta 51, 697–706 (1987).

    Article  ADS  CAS  Google Scholar 

  24. Kaplan, W. A. et al. Pageoph. 116, 423–438 (1978).

    Article  CAS  Google Scholar 

  25. Yoshinari, D. Marine Chem. 4, 189–202 (1976).

    Article  CAS  Google Scholar 

  26. Cohen, Y. & Gordon, L. I. Deep Sea Res. 25, 509–524 (1978).

    Article  ADS  CAS  Google Scholar 

  27. Pierotti, D. & Rasmussen, R. A. Teilus 32, 56–72 (1980).

    ADS  CAS  Google Scholar 

  28. Minami, K. & Fukushi, S. Soil Sci. Pl. Nutr. 30, 495–502 (1984).

    Article  CAS  Google Scholar 

  29. Himmelblau, D. M. Chem. Rev. 64, 527–550 (1964).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ronen, D., Magaritz, M. & Almon, E. Contaminated aquifers are a forgotten component of the global N2O budget. Nature 335, 57–59 (1988). https://doi.org/10.1038/335057a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/335057a0

  • Springer Nature Limited

This article is cited by

Navigation