Skip to main content
Log in

Why ion pair reversal by protein engineering is unlikely to succeed

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Genetic engineering is a powerful tool for exploring correlations between structure and function in proteins, but as yet we are unable to use it for effective protein design. One of the most interesting examples, which would seem to be obvious, is reversing the polarity of an ion pair. Changing a positively charged protein group, that provides a strong binding for negative substrates, to a negative group is expected to provide an effective binding site for a positively charged substrate. But several recent experiments on aspartate aminotransferase1,2, trypsin3 and aspartate transcarbamoylase (Schachman, H. K. personal communication) have indicated that polarity reversal is not so successful. Here we argue that the same factors that make the enzyme an effective system for the (−+) pair will make it a much less effective system for the ( +−)pair. We also point out that the unusually low effective dielectric constant (ɛ ≃ 13) for the (−+) interaction is due to its microenviron-ment and this will destabilize a (+−) arrangement having an entirely different dielectric constant (ɛ ≃ 80). The calculations presented here evaluate the energetics of ion pairs in protein active sites on a semiquantitative level. This is particularly important when dealing with strong, functionally important interactions that are difficult to evaluate with macroscopic models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cronin, C. N., Malcolm, B. A. & Kirsch, J. F. J. Am. chem. Soc. 109, 2222–2223 (1987).

    Article  CAS  Google Scholar 

  2. Cronin, C. N. & Kirsch, J. F. Biochemistry (manuscript submitted).

  3. Graf, L. et al. Biochemistry 26, 2616–2638 (1987).

    Article  CAS  Google Scholar 

  4. Warshel, A. Biochemistry 20, 3167–3177 (1981).

    Article  CAS  Google Scholar 

  5. Warshel, A., Sussman, F. & King, G. Biochemistry 25, 8368–8372 (1986).

    Article  CAS  Google Scholar 

  6. Warshel, A. & Sussman, F. Proc. natn. Acad. Sci. U.S.A 83, 3806–3810 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Hwang, J-K & Warshel, A. Biochemistry 26, 2669–2673 (1987).

    Article  CAS  Google Scholar 

  8. Warshel, A. & Russell, S. T. Q. Rev. Biophys. 17, 283–422 (1984).

    Article  CAS  Google Scholar 

  9. Rao, S. N., Singh, U. C., Bash, P. A. & Kollman, P. A. Nature 328, 551–554 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Mezei, M., Mehrotra, P. K. & Beveridge, D. L. J. Am. chem. Soc. 107, 2239–2245 (1985).

    Article  CAS  Google Scholar 

  11. Arnone, A. et. al. in Molecular Structure and Biological Activity (eds Griffen, J. F. & Duax, W. L.) 57–74 (Elsevier, New York, 1982).

    Google Scholar 

  12. Kirsch, J. F. et al. J. mol. Biol. 174, 497–525 (1984).

    Article  CAS  Google Scholar 

  13. Warshel, A., Russell, S. T. & Churg, A. K. Proc. natn. Acad. Sci. U.S.A. 81, 4785–4789 (1984).

    Article  ADS  CAS  Google Scholar 

  14. Warshel, A. Proc. natn Acad. Sci. U.S.A. 75, 5250–5254 (1978).

    Article  ADS  CAS  Google Scholar 

  15. Quiocho, F. A., Sack, J. S. & Vyas, N. K. Nature 329, 561–564 (1987).

    Article  ADS  CAS  Google Scholar 

  16. Wells, J. A., Powers, D. B., Bott, R. R., Craycar, T. P. & Estell, D. A. Proc. natn. Acad. Sci. U.S.A. 84, 1219–1223 (1989).

    Article  ADS  Google Scholar 

  17. Sternberg, M. J. E., Hayes, F. R. F., Russell, A. J., Thomas, P. G. & Fersht, A. R. Nature 305, 86–88 (1987).

    Article  ADS  Google Scholar 

  18. Russell, A. J. & Fersht, A. R. Nature 328, 496–500 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Gilson, M. K. & Honig, B. H. Nature 330, 84–86 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Warshel, A. Nature 330, 15–16 (1987).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, JK., Warshel, A. Why ion pair reversal by protein engineering is unlikely to succeed. Nature 334, 270–272 (1988). https://doi.org/10.1038/334270a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/334270a0

  • Springer Nature Limited

This article is cited by

Navigation