Skip to main content
Log in

Computed redox potentials and the design of bioreductive agents

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Anti-cancer agents that have been made selective for tumour cells by exploiting the known differences in the availability of oxygen between normal and transformed cells are a promising development in cancer chemotherapy1. We have recently suggested a new type of bioreductive activity which would depend on a two-electron reduction2–4. For rational design of such compounds, it is essential to be able to predict the redox potentials and the chemical modifications needed to produce the optimum redox value. Calculating redox potentials is a daunting task for the theoretician, however, as the effect of water solvation is clearly of major significance. Recent successful calculations5–10 of differences in the free energies of biologically important molecules in aqueous solution using the free-energy perturbation method prompted us to apply (he technique to the computation of two-electron redox potentials. The results are accurate to within 20 mV, suggesting that we should be able to manipulate redox potentials by successfully predicting structures with the appropriate value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, G. E. & Stratford, I. J., Biochem. Pharmac. 35, 71–76 (1986).

    Article  CAS  Google Scholar 

  2. Reynolds, C. A., Richards, W. G. & Goodford, P. Anti-Cancer Drug Design 1, 291–295 (1987).

    CAS  PubMed  Google Scholar 

  3. Reynolds, C. A., Richards, W. G. & Goodford, P. J. chem. Soc. 551–556 (1988).

  4. Burridge, J. M., Quarendon, P., Reynolds, C. A. & Goodford, P. J., J. molec. Graphics 5, 165–166 (1987).

    Article  CAS  Google Scholar 

  5. Cieplak, P., Singh, U. C. & Kollman, P. A. Int. J. quant. Chem. QBS14, 65–74 (1987).

    Article  CAS  Google Scholar 

  6. Wong, C. F. & McCammon, J. A. J. Am. chem. Soc. 108, 3830–3832 (1986).

    Article  CAS  Google Scholar 

  7. Singh, U. C., Brown, F. K., Bash, P. A. & Kollman, P. A., J. Am. chem. Soc. 109, 1607–1614 (1987).

    Article  CAS  Google Scholar 

  8. Bash, P. A., Singh, U. C., Brown, F. K., Langridge, R. & Kollman, P. A. Science 235, 574–575 (1987).

    Article  ADS  CAS  Google Scholar 

  9. Bash, P. A., Singh, U. C., Langridge, R. & Kollman, P. A. Science 236, 564–568 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Rao, S. N., Singh, U. C., Bash, P. A. & Kollman, P. A. Nature 328, 551–554 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Kennedy, K. A., Teicher, B. A., Rockwell, S. & Sartorelli, A. C. Biochem. Pharmac. 29, 1–8 (1980).

    Article  CAS  Google Scholar 

  12. Zwanzig, R. W. J. chem. Phys. 22, 1420–1426 (1954).

    Article  ADS  CAS  Google Scholar 

  13. Postma, J. P. M., Berendsen, H. J. & Haak, J. R., Faraday Symp. Chem. 17, 55–67 (1982).

    Article  Google Scholar 

  14. Tembe, B. L. & McCammon, J. A. Computers Chem. 8, 281–283 (1984).

    Article  CAS  Google Scholar 

  15. Lybrand, T. P., McCammon, J. A. & Wipff, G. Proc. natn. Acad. Sci. U.S.A. 83, 833–835 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Jorgensen, W. L. & Ravimohan, C. J. chem. Phys. 83, 3050–3054 (1985).

    Article  ADS  CAS  Google Scholar 

  17. Singh, U. C., Weiner, P. K., Caldwell, J. W. & Kollman, P. A. AMBER Version 3.0 (Dept Pharmaceutical Chemistry, Univ. San Francisco, 1986).

    Google Scholar 

  18. Roothaan, C. C. J. Rev. mod. Phys. 23, 69–89 (1951).

    Article  ADS  CAS  Google Scholar 

  19. Møller, C. & Plesset, M. S., Phys. Rev. 46, 618–622 (1934).

    Article  ADS  Google Scholar 

  20. Dewer, M. J. S. & Stewart, J. J. P., AMPAC, Quantum Chemistry Program Exchange Bulletin 6, 24 (1986).

    Google Scholar 

  21. Clark, W. M., Oxidation-Reduction Potentials of Organic Systems (Balliere, Tindall & Cox, London, 1960).

    Google Scholar 

  22. Jorgensen, W. L., Chandrasekhar, J., Madura, J., Impey, R. W. & Klein, M. L. J. chem. Phys. 79, 926–935 (1983).

    Article  ADS  CAS  Google Scholar 

  23. van Gunsteren, W. F. & Berendsen, H. J. C. Molec. Phys. 34, 1311–1327 (1977).

    Article  ADS  CAS  Google Scholar 

  24. Weiner, S. J. et al. J. Am. chem. Soc. 106, 765–784 (1984).

    Article  CAS  Google Scholar 

  25. Weiner, S. J., Kollman, P. A., Nguyen, D. T. & Case, D. A. J. comput., Chem. 7, 230–252 (1986).

    Article  CAS  Google Scholar 

  26. Singh, U. C. & Kollman, P. A. J. comput. Chem. 5, 129–145 (1984).

    Article  CAS  Google Scholar 

  27. Frisch, M. Gaussian 82 Revision H Version (Carnegie-Mellon University, Pittsburg, 1985).

    Google Scholar 

  28. Amos, R. D. CADPAC 3.0 (University of Cambridge, 1986).

    Google Scholar 

  29. Binkley, J. S., Pople, J. A. & Hehre, W. J. J. Am. chem. Soc. 102, 939–947 (1980).

    Article  CAS  Google Scholar 

  30. Hariharan, P. C. & Pople, J. A. Theor. chim. Acta 28, 213–222 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reynolds, C., King, P. & Richards, W. Computed redox potentials and the design of bioreductive agents. Nature 334, 80–82 (1988). https://doi.org/10.1038/334080a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/334080a0

  • Springer Nature Limited

This article is cited by

Navigation