Skip to main content
Log in

Transgenes as probes for active chromosomal domains in mouse development

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Embryonic development entails a well defined temporal and spatial programme of gene expression, which may be influenced by active chromosomal domains. These chromosomal domains can be detected using transgenes which integrate randomly throughout the genome, as their expression can be affected by chromosomal position1–3. Position effects are probably exerted most strongly on transgenes that do not contain strong promoters, enhancers or other modulating sequences. Here we have systematically explored position effects using a transgene with the weak herpes-simplex-virus thymidine-kinase promoter, linked to the readily visualized lacZ indicator gene (HSV-TK-lacZ). Each transgenic fetus with detectable expression displayed a unique lacZ staining pattern. Thus expression of this construct is apparently dictated entirely by its chromosomal position, without any construct specificity. Furthermore the transgene is faithfully transmitted to subsequent generations, allowing for systematic mapping of changes in expression during development and in adult life. These results demonstrate that transgenes can indeed be powerful tools to probe the genome for active chromosomal regions, with the potential for identifying endogenous genes involved in organogenesis and pattern formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Palmiter, R. D. & Brinster, R. L. A. Rev. Genet. 20, 465–499 (1986).

    Article  CAS  Google Scholar 

  2. Jaenisch, R. et al. Cell 24, 510–529 (1981).

    Article  Google Scholar 

  3. Lacy, E., Roberts, S., Evans, E. P., Burtenshaw, M. D. & Costantini, F. D. Cell 34, 343–358 (1983).

    Article  CAS  Google Scholar 

  4. Wagner, M. J., Sharp, J. A. & Summers, W. C. Proc. natn. Acad. Sci. U.S.A. 78, 1441–1445 (1981).

    Article  ADS  CAS  Google Scholar 

  5. Hall, C., Jacob, P., Ringold, G. & Frank, L. J. molec. appl. Genet. 2, 101–109 (1983).

    CAS  Google Scholar 

  6. Wagner, E. F., Stewart, T. A. & Mintz, B. Proc. natn. Acad. Sci. U.S.A. 78, 5016–5020 (1981).

    Article  ADS  CAS  Google Scholar 

  7. Brinster, R. L., Chen, H. Y., Warren, R., Sarthy, A. & Palmiter, R. D. Nature 296, 39–42 (1982).

    Article  ADS  CAS  Google Scholar 

  8. Butner, K. & Lo, C. W. Molec. Cell Biol. 6, 4440–4449 (1986).

    Article  CAS  Google Scholar 

  9. Sanes, J. R., Rubenstein, J. L. R. & Nicolas, J-F. EMBO J. 5, 3133–3142 (1986).

    Article  CAS  Google Scholar 

  10. Turner, D. L. & Cepko, C. L. Nature 328, 131–136 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Goring, D. R., Rossant, J., Clapoff, S., Breitman, M. L. & Tsui, L. C. Science 235, 456–457 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Allen, N. D., Barton, S. C., Surani, M. A. H. & Reik, W. in Mammalian Development—A Practical Approach (ed. Monk, M.) 217–233 (IRL Press, Oxford, 1987).

    Google Scholar 

  13. Stewart, C. L., Schuetze, S., Vanek, M. & Wagner, E. F. EMBO J. 6, 383–388 (1987).

    Article  CAS  Google Scholar 

  14. Rohdewohld, H., Weiher, H., Reik, W., Jaenisch, R. & Breindl, M. J. Virol. 61, 336–343 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Swanson, L. W. et al. Nature 317, 363–366 (1985).

    Article  ADS  CAS  Google Scholar 

  16. Low, M. J. et al. Science 231, 1002–1024 (1987).

    Article  ADS  Google Scholar 

  17. Das, O. P. & Massing, J. W. Molec. Cell. Biol. 7, 4490–4497 (1987).

    Article  CAS  Google Scholar 

  18. Soriano, P., Cone, R., Mulligan, R. & Jaenisch, R. Science 234, 1409–1413 (1986).

    Article  ADS  CAS  Google Scholar 

  19. Shani, M. Molec. Cell Biol. 6, 2624–2631 (1986).

    Article  CAS  Google Scholar 

  20. Jahner, D. & Jaenisch, R. Molec. Cell Biol. 5, 2212–2220 (1985).

    Article  CAS  Google Scholar 

  21. Sorge, J., Cutting, A., Erdman, V. & Gautsch, J. Proc. natn. Acad. Sci. U.S.A. 81, 6627–6631 (1984).

    Article  ADS  CAS  Google Scholar 

  22. Barklis, E., Mulligan, R. & Jaenisch, R. Cell 47, 391–399 (1986).

    Article  CAS  Google Scholar 

  23. Taketo, M. & Tanaka, M. Proc. natn. Acad. Sci. U.S.A. 84, 3748–3752 (1987).

    Article  ADS  CAS  Google Scholar 

  24. Hamada, H. Molec. Cell Biol. 6, 4179–4184 (1986).

    Article  CAS  Google Scholar 

  25. Hamada, H. Molec. Cell Biol. 6, 4185–4194 (1986).

    Article  CAS  Google Scholar 

  26. Forrester, W. C., Takegawa, S., Papayannopoulou, T., Stamatoyannopoulos, G. & Groudine, M. Nucleic Acid Res. 15, 10159–10177 (1987).

    Article  CAS  Google Scholar 

  27. Grosveld, F., van Assendelft, G. B., Greaves, D. R. & Kollias, G. Cell 51, 975–985 (1987).

    Article  CAS  Google Scholar 

  28. Wilkie, T. M., Brinster, R. L. & Palmiter, R. D. Devl Biol. 118, 9–18 (1986).

    Article  CAS  Google Scholar 

  29. O'Kane, C. J. & Gehring, W. J. Proc. natn. Acad. Sci. U.S.A. 84, 9123–9127 (1987).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alien, N., Cran, D., Barton, S. et al. Transgenes as probes for active chromosomal domains in mouse development. Nature 333, 852–855 (1988). https://doi.org/10.1038/333852a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/333852a0

  • Springer Nature Limited

This article is cited by

Navigation