Skip to main content

Advertisement

Log in

The N-terminal region of the chicken progesterone receptor specifies target gene activation

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Steroid hormone recepTo Whom It May Concern:rs belong to a family of nuclear receptors that trigger transcriptional activation of target genes by specific binding to DNA recognition sequences, usually located in the 5'-flanking region of the target gene. Nuclear receptors appear to be segmented proteins1 and extensive structure-function analyses have attempted to elucidate the functional significance of individual segments. Two of these regions have been defined as the domains responsible for recognition of responsive elements of target genes (region C) and hormone binding (region E) (refs 2–7). But the functional significance of the N-terminal region (A/B), which diverges extensively even for a given receptor between different species, has remained obscure. We have previously cloned, expressed and analysed the chicken progesterone receptor (cPR) (ref. 8). This receptor and its human homologue from T47D breast cancer cells are unique among the steroid hormone receptors in that two forms, A and B, are present in equal amounts in cytosolic extracts, the latter having the higher molecular weight9,10. For the chicken progesterone receptor, we have presented evidence suggesting that the cPR form A corresponds to an N-terminally truncated form of B (ref. 8). Here we report on the functional difference between the forms A and B in the transcriptional activation of two target genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Green, S. & Chambon, P. Nature 324, 18–25 (1986).

    Article  Google Scholar 

  2. Green, S. & Chambon, P. Nature 325, 75–78 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Kumar, V., Green, S., Stack, G., Berry, M., Jin, J. R. & Chambon, P. Cell 51, 941–951 (1987).

    Article  CAS  Google Scholar 

  4. Kumar, V., Green, S., Staub, A. & Chambon, P. EMBO J. 5, 2231–2236 (1986).

    Article  CAS  Google Scholar 

  5. Hollenberg, S. M., Giguère, V., Segui, P. & Evans, R. M. Cell 49, 39–46 (1987).

    Article  CAS  Google Scholar 

  6. Godowski, P. J., Rusconi, S., Miesfeld, R. & Yamamoto, K. R. Nature 325, 365–368 (1987).

    Article  ADS  CAS  Google Scholar 

  7. Danielson, M., Northrop, J. P. & Ringold, G. M. EMBO J. 5, 2513–2522 (1986).

    Article  Google Scholar 

  8. Gronemeyer, H. et al. EMBO J. 6, 3985–3994 (1987).

    Article  CAS  Google Scholar 

  9. Gronemeyer, H., Harry, P. & Chambon, P. FEBS Lett. 156, 287–292 (1983).

    Article  CAS  Google Scholar 

  10. Wei, L. L. et al. Biochemistry 26, 6262–6272 (1987).

    Article  CAS  Google Scholar 

  11. Gannon, F. et al. Nature 278, 428–434 (1979).

    Article  ADS  CAS  Google Scholar 

  12. Zenke, M. et al. EMBO J. 5, 387–397 (1986).

    Article  CAS  Google Scholar 

  13. Green, S. et al. Nature 320, 134–139 (1986).

    Article  ADS  CAS  Google Scholar 

  14. Renkawitz, R., Schütz, G., von der Ahe, D. & Beato, M. Cell 37, 503–510 (1984).

    Article  CAS  Google Scholar 

  15. von der Ahe, D., Renoir, J. M., Buchou, T., Baulieu, E. E. & Beato, M. Proc. natn. Acad. Sci. U.S.A. 83, 2817–2821 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Gope, M. L. et al. Nucleic Acids Res. 15, 3595–3607 (1987).

    Article  CAS  Google Scholar 

  17. Bailly, A., Le Page, C., Rauch, M. & Milgrom, E. EMBO J. 5, 3235–3241 (1986).

    Article  CAS  Google Scholar 

  18. Hollenberg, S. M., Giguere, V., Segui, P. & Evans, R. M. Cell 49, 39–46 (1987).

    Article  CAS  Google Scholar 

  19. Miesfeld, R., Godowski, P. J., Maler, B. A. & Yamamoto, K. R. Science 236, 423–427 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Jeltsch, J. M. et al. Proc. natn. Acad. Sci. U.S.A. 83, 5424–5428 (1986).

    Article  ADS  CAS  Google Scholar 

  21. Weinberger, C. et al. Nature 324, 18–25 (1986).

    Article  Google Scholar 

  22. Thompson, C. C., Weinberger, C., Lebo, R. & Evans, R. M. Science 237, 1610–1614 (1987).

    Article  ADS  CAS  Google Scholar 

  23. Benbrook, D. & Pfahl, M. Science 238, 788–791 (1987).

    Article  ADS  CAS  Google Scholar 

  24. Petkovich, M., Brand, N. J., Krust, A. & Chambon, P. Nature 330, 444–450 (1987).

    Article  ADS  CAS  Google Scholar 

  25. Giguere, V., Ong, E. S., Segui, P. & Evans, R. M. Nature 330, 624–629 (1987).

    Article  ADS  CAS  Google Scholar 

  26. Brand, N. et al. Nature (in the press).

  27. Tooze, J. Molecular Biology of Tumor Viruses 2nd Edn, Part 2 (Cold Spring Harbor Laboratory Press, 1982).

    Google Scholar 

  28. Dierich, A., Gaub, M. P., Le Pennec, J. P., Astinotti, D. & Chambon, P. EMBO J. 6, 2305–2312 (1987).

    Article  CAS  Google Scholar 

  29. Cato, A. C. B., Henderson, D. & Ponta, H. EMBO J. 6, 363–368 (1987).

    Article  CAS  Google Scholar 

  30. Banerji, J., Olson, L. & Schaffner, W. Cell 33, 729–740 (1983).

    Article  CAS  Google Scholar 

  31. Gorman, C. M., Moffat, L. F. & Howard, B. H. Mol. cell. Biol. 2, 1044–1051 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tora, L., Gronemeyer, H., Turcotte, B. et al. The N-terminal region of the chicken progesterone receptor specifies target gene activation. Nature 333, 185–188 (1988). https://doi.org/10.1038/333185a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/333185a0

  • Springer Nature Limited

This article is cited by

Navigation